fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, July 7, 2019

Elucidating the triplicated ancestral genome structure of radish based on chromosome-level comparison with the Brassica genomes.

This study presents a chromosome-scale draft genome sequence of radish that is assembled into nine chromosomal pseudomolecules. A comprehensive comparative genome analysis with the Brassica genomes provides genomic evidences on the evolution of the mesohexaploid radish genome. Radish (Raphanus sativus L.) is an agronomically important root vegetable crop and its origin and phylogenetic position in the tribe Brassiceae is controversial. Here we present a comprehensive analysis of the radish genome based on the chromosome sequences of R. sativus cv. WK10039. The radish genome was sequenced and assembled into 426.2 Mb spanning >98 % of the gene space, of which 344.0 Mb were integrated…

Read More »

Sunday, July 7, 2019

OPERA-LG: efficient and exact scaffolding of large, repeat-rich eukaryotic genomes with performance guarantees.

The assembly of large, repeat-rich eukaryotic genomes represents a significant challenge in genomics. While long-read technologies have made the high-quality assembly of small, microbial genomes increasingly feasible, data generation can be expensive for larger genomes. OPERA-LG is a scalable, exact algorithm for the scaffold assembly of large, repeat-rich genomes, out-performing state-of-the-art programs for scaffold correctness and contiguity. It provides a rigorous framework for scaffolding of repetitive sequences and a systematic approach for combining data from different second-generation and third-generation sequencing technologies. OPERA-LG provides an avenue for systematic augmentation and improvement of thousands of existing draft eukaryotic genome assemblies.

Read More »

Sunday, July 7, 2019

Next-generation sequencing-based detection of germline L1-mediated transductions.

While active LINE-1 (L1) elements possess the ability to mobilize flanking sequences to different genomic loci through a process termed transduction influencing genomic content and structure, an approach for detecting polymorphic germline non-reference transductions in massively-parallel sequencing data has been lacking.Here we present the computational approach TIGER (Transduction Inference in GERmline genomes), enabling the discovery of non-reference L1-mediated transductions by combining L1 discovery with detection of unique insertion sequences and detailed characterization of insertion sites. We employed TIGER to characterize polymorphic transductions in fifteen genomes from non-human primate species (chimpanzee, orangutan and rhesus macaque), as well as in a human…

Read More »

Sunday, July 7, 2019

TERRA promotes telomerase-mediated telomere elongation in Schizosaccharomyces pombe.

Telomerase-mediated telomere elongation provides cell populations with the ability to proliferate indefinitely. Telomerase is capable of recognizing and extending the shortest telomeres in cells; nevertheless, how this mechanism is executed remains unclear. Here, we show that, in the fission yeast Schizosaccharomyces pombe, shortened telomeres are highly transcribed into the evolutionarily conserved long noncoding RNA TERRA A fraction of TERRA produced upon telomere shortening is polyadenylated and largely devoid of telomeric repeats, and furthermore, telomerase physically interacts with this polyadenylated TERRA in vivo We also show that experimentally enhanced transcription of a manipulated telomere promotes its association with telomerase and concomitant…

Read More »

Sunday, July 7, 2019

Complete genome sequence of Wohlfahrtiimonas chitiniclastica strain BM-Y, isolated from the pancreas of a zebra in China.

Here, a complete genome sequence of Wohlfahrtiimonas chitiniclastica strain BM-Y is presented. The whole genome is 2.18-Mb and contains a blaVEB-1 gene cassette which endows it with resistance to ceftazidime, ampicillin, tetracycline, etc. To our knowledge, this is the first time that an extended spectrum beta-lactamase (ESBL) type W. chitiniclastica strain has been found. Copyright © 2016 Zhou et al.

Read More »

Sunday, July 7, 2019

Complete genome sequence of thermophilic Bacillus smithii type strain DSM 4216(T).

Bacillus smithii is a facultatively anaerobic, thermophilic bacterium able to use a variety of sugars that can be derived from lignocellulosic feedstocks. Being genetically accessible, it is a potential new host for biotechnological production of green chemicals from renewable resources. We determined the complete genomic sequence of the B. smithii type strain DSM 4216(T), which consists of a 3,368,778 bp chromosome (GenBank accession number CP012024.1) and a 12,514 bp plasmid (GenBank accession number CP012025.1), together encoding 3880 genes. Genome annotation via RAST was complemented by a protein domain analysis. Some unique features of B. smithii central metabolism in comparison to related organisms…

Read More »

Sunday, July 7, 2019

Genome sequences of Ralstonia insidiosa type strain ATCC 49129 and strain FC1138, a strong biofilm producer isolated from a fresh-cut produce-processing plant.

Ralstonia insidiosa is an opportunistic pathogen and a strong biofilm producer. Here, we present the complete genome sequences of R. insidiosa FC1138 and ATCC 49129. Both strains have two circular chromosomes of approximately 3.9 and 1.9 Mb and a 50-kb plasmid. ATCC 49129 also possesses a megaplasmid of approximately 318 kb. Copyright © 2016 Xu et al.

Read More »

Sunday, July 7, 2019

Characterization of the mechanism of prolonged adaptation to osmotic stress of Jeotgalibacillus malaysiensis via genome and transcriptome sequencing analyses.

Jeotgalibacillus malaysiensis, a moderate halophilic bacterium isolated from a pelagic area, can endure higher concentrations of sodium chloride (NaCl) than other Jeotgalibacillus type strains. In this study, we therefore chose to sequence and assemble the entire J. malaysiensis genome. This is the first report to provide a detailed analysis of the genomic features of J. malaysiensis, and to perform genetic comparisons between this microorganism and other halophiles. J. malaysiensis encodes a native megaplasmid (pJeoMA), which is greater than 600 kilobases in size, that is absent from other sequenced species of Jeotgalibacillus. Subsequently, RNA-Seq-based transcriptome analysis was utilised to examine adaptations…

Read More »

Sunday, July 7, 2019

Genomic, physiologic, and proteomic insights into metabolic versatility in Roseobacter clade bacteria isolated from deep-sea water.

Roseobacter clade bacteria are ubiquitous in marine environments and now thought to be significant contributors to carbon and sulfur cycling. However, only a few strains of roseobacters have been isolated from the deep-sea water column and have not been thoroughly investigated. Here, we present the complete genomes of phylogentically closed related Thiobacimonas profunda JLT2016 and Pelagibaca abyssi JLT2014 isolated from deep-sea water of the Southeastern Pacific. The genome sequences showed that the two deep-sea roseobacters carry genes for versatile metabolisms with functional capabilities such as ribulose bisphosphate carboxylase-mediated carbon fixation and inorganic sulfur oxidation. Physiological and biochemical analysis showed that…

Read More »

Sunday, July 7, 2019

Comprehensive genomic and phenotypic metal resistance profile of Pseudomonas putida strain S13.1.2 isolated from a vineyard soil.

Trace metals are required in many cellular processes in bacteria but also induce toxic effects to cells when present in excess. As such, various forms of adaptive responses towards extracellular trace metal ions are essential for the survival and fitness of bacteria in their environment. A soil Pseudomonas putida, strain S13.1.2 has been isolated from French vineyard soil samples, and shown to confer resistance to copper ions. Further investigation revealed a high capacity to tolerate elevated concentrations of various heavy metals including nickel, cobalt, cadmium, zinc and arsenic. The complete genome analysis was conducted using single-molecule real-time (SMRT) sequencing and…

Read More »

Sunday, July 7, 2019

Whole genome sequence analysis indicates recent diversification of mammal-associated Campylobacter fetus and implicates a genetic factor associated with H2S production.

Campylobacter fetus (C. fetus) can cause disease in both humans and animals. C. fetus has been divided into three subspecies: C. fetus subsp. fetus (Cff), C. fetus subsp. venerealis (Cfv) and C. fetus subsp. testudinum (Cft). Subspecies identification of mammal-associated C. fetus strains is crucial in the control of Bovine Genital Campylobacteriosis (BGC), a syndrome associated with Cfv. The prescribed methods for subspecies identification of the Cff and Cfv isolates are: tolerance to 1 % glycine and H2S production.In this study, we observed the deletion of a putative cysteine transporter in the Cfv strains, which are not able to produce H2S…

Read More »

Sunday, July 7, 2019

Genome and plasmid analysis of blaIMP-4 -carrying Citrobacter freundii B38.

Sequencing of the blaIMP-4 -carrying C. freundii B38 using PacBio SMRT technique revealed that the genome contained a chromosome of 5,134,500 bp, and three plasmids, pOZ172 (127,005 bp), pOZ181 (277,592 bp), and pOZ182 (18,467 bp). Plasmid pOZ172 was identified as IncFIIY, like pP10164-NDM and pNDM-EcGN174. It carries a class 1 integron with four cassettes: blaIMP-4-qacG2-aacA4-aphA15, and a complete hybrid tni module (tniR-tniQ-tniB-tniA). The recombination of tniR from Tn402 (identical) with tniQBA (99%) from Tn5053 occurred within the res site of Tn402/5053. The Tn402/5053-like integron, named Tn6017, was inserted into Tn1722 at the res II site. The replication, partitioning and transfer…

Read More »

1 5 6 7 8 9

Subscribe for blog updates:

Archives