Menu
July 7, 2019  |  

Complete genome sequence of super biofilm-elaborating Staphylococcus aureus isolated in Japan.

Staphylococcus aureus JP080, previously named TF2758, is a clinical isolate from an atheroma and a super biofilm-elaborating strain whose biofilm elaboration is dependent solely on polysaccharide poly-N-acetylglucosamine/polysaccharide intercellular adhesin (PNAG/PIA). Here, we report the complete genome sequence of strain JP080, which consists of one chromosome and one circular plasmid. Copyright © 2017 Yu et al.


July 7, 2019  |  

Complete genome sequence of Eubacterium hallii strain L2-7.

The complete genome sequence of Eubacterium hallii strain L2-7 is reported here. This intestinal strain produces butyrate from glucose as well as lactate when acetate is provided in the growth medium. In addition, strain L2-7 has been shown to improve insulin sensitivity in db/db mice, indicating its application potential. Copyright © 2017 Shetty et al.


July 7, 2019  |  

Complete genome sequence of multidrug-resistant Staphylococcus sciuri strain SNUDS-18 isolated from a farmed duck in South Korea.

This study aimed to determine the complete genome sequence of multidrug-resistant Staphylococcus sciuri strain SNUDS-18 isolated from a farmed duck in South Korea.Genomic DNA was sequenced using a PacBio RS II system. The obtained genome was annotated and antimicrobial resistance and virulence genes were identified.The sequenced genome possessed a mecA homologue (mecA1) that was almost identical to that of other oxacillin-susceptible S. sciuri strains, whereas the staphylococcal cassette chromosome mec (SCCmec) was not detected. Moreover, various antimicrobial resistance genes conferring resistance to ß-lactams, aminoglycosides, phenicols, tetracycline and macrolide-lincosamide-streptogramin B (MLSB) antimicrobials were identified.The SNUDS-18 genome and its associated genomic data will provide important insights into the biodiversity of the S. sciuri group as well as valuable information for the control of this potential pathogen. Copyright © 2017 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.


July 7, 2019  |  

Assembly of an early-matured japonica (Geng) rice genome, Suijing18, based on PacBio and Illumina sequencing.

The early-matured japonica (Geng) rice variety, Suijing18 (SJ18), carries multiple elite traits including durable blast resistance, good grain quality, and high yield. Using PacBio SMRT technology, we produced over 25?Gb of long-read sequencing raw data from SJ18 with a coverage of 62×. Using Illumina paired-end whole-genome shotgun sequencing technology, we generated 59?Gb of short-read sequencing data from SJ18 (23.6?Gb from a 200?bp library with a coverage of 59× and 35.4?Gb from an 800?bp library with a coverage of 88×). With these data, we assembled a single SJ18 genome and then generated a set of annotation data. These data sets can be used to test new programs for variation deep mining, and will provide new insights into the genome structure, function, and evolution of SJ18, and will provide essential support for biological research in general.


July 7, 2019  |  

Genomic analysis of a pathogenic bacterium, Paeniclostridium sordellii CBA7122 containing the highest number of rRNA operons, isolated from a human stool sample.

Paeniclostridium sordellii was first isolated by Alfredo Sordelli in 1922 under the proposed name Bacillus oedematis, and was then renamed Bacillus sordellii in 1927 (Hall and Scott, 1927). Two years later, it was classified as Clostridium sordellii (Hall et al., 1929). Recently, this bacterium was reclassified as a species of the genus Paeniclostridium, named P. sordellii comb. nov. (Sasi Jyothsna et al., 2016). P. sordellii is an anaerobic, Gram-stain-positive, spore-forming rod bacterium with flagella. Most strains are non-pathogenic, but some strains have been associated with severe infections of humans and animals. In humans, P. sordellii is mainly associated with trauma, toxic shock, soft tissue skin infections, and gynecologic infections. Despite the serious consequences of infection with P. sordellii, treatment is difficult because of the rapid progression from recognition of the first symptoms to death (Aldape et al., 2006).


July 7, 2019  |  

The complete mitochondrial genome of Wonwhang (Pyrus pyrifolia)

This is a de novo assembly and annotation of a complete mitochondrial genome from Pyrus pyrifolia in the family Rosaceae. The complete mitochondrial genome of P. pyrifolia was assembled from PacBio RSII P6-C4 sequencing reads. The circular genome was 458,873?bp in length, containing 39 protein-coding genes, 23 tRNA genes and three rRNA genes. The nucleotide composition was A (27.5%), T (27.3%), G (22.6%) and C (22.6%) with GC content of 45.2%. Most of protein-coding genes use the canonical start codon ATG, whereas nad1, cox1, matR and rps4 use ACG, mttB uses ATT, rpl16 and rps19 uses GTG. The stop codon is also common in all mitochondrial genes. The phylogenetic analysis showed that P. pyrifolia was clustered with the Malus of Rosaceae family. Maximum-likelihood analysis suggests a clear relationship of Rosids and Asterids, which support the traditional classification.


July 7, 2019  |  

Evaluation of the impact of ul54 gene-deletion on the global transcription and DNA replication of pseudorabies virus.

Pseudorabies virus (PRV) is an animal alphaherpesvirus with a wide host range. PRV has 67 protein-coding genes and several non-coding RNA molecules, which can be classified into three temporal groups, immediate early, early and late classes. The ul54 gene of PRV and its homolog icp27 of herpes simplex virus have a multitude of functions, including the regulation of viral DNA synthesis and the control of the gene expression. Therefore, abrogation of PRV ul54 function was expected to exert a significant effect on the global transcriptome and on DNA replication. Real-time PCR and real-time RT-PCR platforms were used to investigate these presumed effects. Our analyses revealed a drastic impact of the ul54 mutation on the genome-wide expression of PRV genes, especially on the transcription of the true late genes. A more than two hour delay was observed in the onset of DNA replication, and the amount of synthesized DNA molecules was significantly decreased in comparison to the wild-type virus. Furthermore, in this work, we were able to successfully demonstrate the utility of long-read SMRT sequencing for genotyping of mutant viruses.


July 7, 2019  |  

Pectobacterium polaris sp. nov., isolated from potato (Solanum tuberosum).

The genus Pectobacterium, which belongs to the bacterial family Enterobacteriaceae, contains numerous species that cause soft rot diseases in a wide range of plants. The species Pectobacterium carotovorum is highly heterogeneous, indicating a need for re-evaluation and a better classification of the species. PacBio was used for sequencing of two soft-rot-causing bacterial strains (NIBIO1006T and NIBIO1392), initially identified as P. carotovorumstrains by fatty acid analysis and sequencing of three housekeeping genes (dnaX, icdA and mdh). Their taxonomic relationship to other Pectobacterium species was determined and the distance from any described species within the genus Pectobacterium was less than 94?% average nucleotide identity (ANI). Based on ANI, phylogenetic data and genome-to-genome distance, strains NIBIO1006T, NIBIO1392 and NCPPB3395 are suggested to represent a novel species of the genus Pectobacterium, for which the name Pectobacterium polaris sp. nov. is proposed. The type strain is NIBIO1006T (=DSM 105255T=NCPPB 4611T).


July 7, 2019  |  

Complete genome sequence and genomic characterization of Microcystis panniformis FACHB 1757 by third-generation sequencing.

The cyanobacterial genus Microcystis is well known as the main group that forms harmful blooms in water. A strain of Microcystis, M. panniformis FACHB1757, was isolated from Meiliang Bay of Lake Taihu in August 2011. The whole genome was sequenced using PacBio RS II sequencer with 48-fold coverage. The complete genome sequence with no gaps contained a 5,686,839 bp chromosome and a 38,683 bp plasmid, which coded for 6,519 and 49 proteins, respectively. Comparison with strains of M. aeruginosa and some other water bloom-forming cyanobacterial species revealed large-scale structure rearrangement and length variation at the genome level along with 36 genomic islands annotated genome-wide, which demonstrates high plasticity of the M. panniformis FACHB1757 genome and reveals that Microcystis has a flexible genome evolution.


July 7, 2019  |  

Adaptive engineering of a hyperthermophilic archaeon on CO and discovering the underlying mechanism by multi-omics analysis.

The hyperthermophilic archaeon Thermococcus onnurineus NA1 can grow and produce H2 on carbon monoxide (CO) and its H2 production rates have been improved through metabolic engineering. In this study, we applied adaptive evolution to enhance H2 productivity. After over 150 serial transfers onto CO medium, cell density, CO consumption rate and H2 production rate increased. The underlying mechanism for those physiological changes could be explained by using multi-omics approaches including genomic, transcriptomic and epigenomic analyses. A putative transcriptional regulator was newly identified to regulate the expression levels of genes related to CO oxidation. Transcriptome analysis revealed significant changes in the transcript levels of genes belonging to the categories of transcription, translation and energy metabolism. Our study presents the first genome-scale methylation pattern of hyperthermophilic archaea. Adaptive evolution led to highly enhanced H2 productivity at high CO flow rates using synthesis gas produced from coal gasification.


July 7, 2019  |  

Whole genome sequence and genome annotation of Colletotrichum acutatum, causal agent of anthracnose in pepper plants in South Korea

Abstract Colletotrichum acutatum is a destructive fungal pathogen which causes anthracnose in a wide range of crops. Here we report the whole genome sequence and annotation of C. acutatum strain KC05, isolated from an infected pepper in Kangwon, South Korea. Genomic DNA from the KC05 strain was used for the whole genome sequencing using a PacBio sequencer and the MiSeq system. The KC05 genome was determined to be 52,190,760 bp in size with a G + C content of 51.73% in 27 scaffolds and to contain 13,559 genes with an average length of 1516 bp. Gene prediction and annotation were performed by incorporating RNA-Seq data. The genome sequence of the KC05 was deposited at DDBJ/ENA/GenBank under the accession number LUXP00000000.


July 7, 2019  |  

Whole-genome sequence of Erysipelothrix larvae LV19(T) (=KCTC 33523(T)), a useful strain for arsenic detoxification, from the larval gut of the rhinoceros beetle, Trypoxylus dichotomus.

Erysipelothrix larvae LV19(T) was preliminary isolated from the larval gut of a rhinoceros beetle, Trypoxylus dichotomus in Korea. Here, we present the whole genome sequence of E. larvae LV19(T) strain, which consisted of 2,511,486 base pairs with a GC content of 37.4% and one plasmid. Unlike other Erysipelothrix strains (SY 1027, Fujisawa and ATCC 19414), the arsenic-resistance genes were identified in LV19(T) strain. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete nucleotide sequence of pH11, an IncHI2 plasmid conferring multi-antibiotic resistance and multi-heavy metal resistance genes in a clinical Klebsiella pneumoniae isolate.

The complete 284,628bp sequence of pH11, an IncHI2 plasmid, was determined through single-molecule, real-time (SMRT) sequencing. Harbored by a clinical Klebsiella pneumoniae strain H11, and isolated in Beijing, this plasmid contains multiple antibiotic resistance genes, including catA2, aac(6′)-Ib, strB, strA, dfrA19, blaTEM-1, blaSHV-12, sul1, qacE delta 1, ereA, arr2, and aac3. The aac(6′)-Ib is carried by a class I integron. Plasmid pH11 also carries several genes associated with resistance to heavy metals, such as tellurium, mercury, cobalt, zinc, nickel, copper, lead and cadmium. This plasmid exhibits numerous characteristics, including HipBA and RelBE toxin-antitoxin systems, two major transfer (Tra) regions closely related to those of Salmonella enterica serovar plasmid pRH-R27, a type II restriction modification system (EcoRII R-M system), several methyltransferases and methylases and genes encoding Hha and StpA. These characteristics suggest that pH11 may adapt to various hosts and environments. Multiple insertion sequence elements, transposases, recombinases, resolvases and integrases are scattered throughout pH11. The presence of these genes may indicate that horizontal gene transfer occurs frequently in pH11 and thus may facilitate the dissemination of antimicrobial resistance determinants. Our data suggest that pH11 is a chimera gradually assembled through the integration of different horizontally acquired DNA segments via transposition or homologous recombination. Copyright © 2016 Elsevier Inc. All rights reserved.


July 7, 2019  |  

Complete chloroplast genome sequences of Eucommia ulmoides: genome structure and evolution.

Eucommia ulmoides is an important traditional medicinal plant that is used for the production of locative Eucommia rubber. In this study, the complete chloroplast (cp) genome sequence of E. ulmoides was obtained by total DNA sequencing; this is the first cp genome sequence of the order Garryales. The cp genome of E. ulmoides was 163,341 bp long and included a pair of inverted repeat (IR) regions (31,300 bp), one large single copy (LSC) region (86,592 bp), and one small single copy (SSC) region (14,149 bp). The genome structure and GC content were similar to those of typical angiosperm cp genomes and contained 115 unique genes, including 80 protein-coding genes, 31 transfer RNA (tRNAs), and four ribosomal RNA (rRNAs). Compared with the entire cp genome sequence, three unique genome rearrangements were observed in the LSC region. Moreover, compared with the Sesamum and Nicotiana cp genomes, E. ulmoides contained no indels in the IR regions, and variable regions were identified in noncoding regions. The E. ulmoides cp genome showed extreme expansion at the IR/SSC boundary owing to the integration of an additional complete gene, ycf1. Twenty-nine simple sequence repeats (SSRs) were identified in the E. ulmoides cp genome. In addition, 36 protein-coding genes were used for phylogenetic inference, supporting a sister relationship between E. ulmoides and Aucuba, which belongs to Euasterids I. In summary, we described the complete cp genome sequence of E. ulmoides; this information will be useful for phylogenetic and evolutionary studies.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.