fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, July 7, 2019

Complete, closed genome sequences of 10 Salmonella enterica subsp. enterica serovar Typhimurium strains isolated from human and bovine sources.

Salmonella enterica is a leading cause of enterocolitis for humans and animals. S. enterica subsp. enterica serovar Typhimurium infects a broad range of hosts. To facilitate genomic comparisons among isolates from different sources, we present the complete genome sequences of 10 S Typhimurium strains, 5 each isolated from human and bovine sources. Copyright © 2016 Nguyen et al.

Read More »

Sunday, July 7, 2019

Characterization of tet(Y)-carrying LowGC plasmids exogenously captured from cow manure at a conventional dairy farm.

Manure from dairy farms has been shown to contain diverse tetracycline resistance genes that are transferable to soil. Here, we focus on conjugative plasmids that may spread tetracycline resistance at a conventional dairy farm. We performed exogenous plasmid isolation from cattle feces using chlortetracycline for transconjugant selection. The transconjugants obtained harbored LowGC-type plasmids and tet(Y). A representative plasmid (pFK2-7) was fully sequenced and this was compared with previously described LowGC plasmids from piggery manure-treated soil and a GenBank record from Acinetobacter nosocomialis that we also identified as a LowGC plasmid. The pFK2-7 plasmid had the conservative backbone typical of LowGC…

Read More »

Sunday, July 7, 2019

Complete genome sequence of a new halophilic archaeon, Haloarcula taiwanensis, isolated from a solar saltern in southern Taiwan.

We report here the completion of the genome sequence of a new species of haloarchaea, Haloarcula taiwanensis, isolated in southern Taiwan. The 3,721,706-bp genome consisted of chromosome I (2,966,258 bp, 63.6% GC content), chromosome II (525,233 bp, 59.6% GC content), plasmid pNYT1 (129,893 bp, 55.3% GC content), and plasmid pNYT2 (100,322 bp, 55.7% GC content).

Read More »

Sunday, July 7, 2019

Complete genome sequence of multiple-antibiotic-resistant Streptococcus parauberis strain SPOF3K, isolated from diseased olive flounder (Paralichthys olivaceus).

Here, we report the complete genome sequence of multiple-antibiotic-resistant Streptococcus parauberis strain SPOF3K, isolated from the kidney of a diseased olive flounder in South Korea in 2013. Sequencing using a PacBio platform yielded a circular chromosome of 2,128,740?bp and a plasmid of 23,538?bp, harboring 2,123 and 24 protein-coding genes, respectively. Copyright © 2018 Lee et al.

Read More »

Sunday, July 7, 2019

Complete genome sequence of Microcystis aeruginosa NIES-2481 and common genomic features of group G M. aeruginosa.

Microcystis aeruginosa is a freshwater bloom-forming cyanobacterium that is distributed worldwide. M. aeruginosa can be divided into at least 8 phylogenetic groups (A-G and X) at the intraspecific level. Here, we report the complete genome sequence of M. aeruginosa NIES-2481, which was isolated from Lake Kasumigaura, Japan, and is assigned to group G. The complete genome sequence of M. aeruginosa NIES-2481 comprises a 4.29-Mbp circular chromosome and a 147,539-bp plasmid; the circular chromosome and the plasmid contain 4,332 and 167 protein-coding genes, respectively. Comparative analysis with the complete genome of M. aeruginosa NIES-2549, which belongs to the same group with…

Read More »

Sunday, July 7, 2019

Genome sequences of five Mycobacterium bovis strains isolated from farmed animals and wildlife in Canada.

Mycobacterium bovis is the causative agent of bovine tuberculosis, an infectious disease that affects both animals and humans and thus presents a risk to public health and the livestock industry. Here, we report the genome sequences of five Mycobacterium bovis strains that represent major genotype clusters observed in farmed animals and wildlife in Canada.© Crown copyright 2018.

Read More »

Sunday, July 7, 2019

Draft genome sequence of lytic bacteriophage SA7 infecting Staphylococcus aureus isolates

Staphylococcus aureus is a Gram-positive and a round-shaped bacterium of Firmicutes phylum, and is a common cause of skin infections, respiratory infections, and food poisoning. Bacteriophages infecting S. aureus can be an effective treatment for S. aureus infections. Here, the draft genomic sequence is announced for a lytic bacteriophage SA7 infecting S. aureus isolates. The bacteriophage SA7 was isolated from a sewage water sample near a livestock farm in Chungcheongnam-do, South Korea. SA7 has a genome of 34,730 bp and 34.1% G + C content. The genome has 53 protein-coding genes, 23 of which have predicted functions from BLASTp analysis,…

Read More »

Sunday, July 7, 2019

Analysis of resistance genes of clinical Pannonibacter phragmitetus strain 31801 by complete genome sequencing.

To clarify the resistance mechanisms of Pannonibacter phragmitetus 31801, isolated from the blood of a liver abscess patient, at the genomic level, we performed whole genomic sequencing using a PacBio RS II single-molecule real-time long-read sequencer. Bioinformatic analysis of the resulting sequence was then carried out to identify any possible resistance genes. Analyses included Basic Local Alignment Search Tool searches against the Antibiotic Resistance Genes Database, ResFinder analysis of the genome sequence, and Resistance Gene Identifier analysis within the Comprehensive Antibiotic Resistance Database. Prophages, clustered regularly interspaced short palindromic repeats (CRISPR), and other putative virulence factors were also identified using…

Read More »

Sunday, July 7, 2019

Complete genome sequence of Melissococcus plutonius DAT561, a strain that shows an unusual growth profile, obtained by PacBio sequencing.

Melissococcus plutonius is the causative agent of European foulbrood, and its isolates were believed to be remarkably genetically homogeneous. However, recent epidemiological and pathogenic studies have shown this pathogen to be more heterogeneous than expected. Herein, we present the whole-genome sequence of M. plutonius DAT561, a representative atypical strain. Copyright © 2018 Okumura et al.

Read More »

Sunday, July 7, 2019

Complete genome sequence of Achromobacter spanius type strain DSM 23806T, a pathogen isolated from human blood.

Achromobacter spanius is a newly described, non-fermenting, Gram-negative, coccoid pathogen isolated from human blood. Whole-genome sequencing of the A. spanius type strain was performed to investigate the mechanism of pathogenesis of this strain at a genomic level.The complete genome of A. spanius type strain DSM 23806T was sequenced using single-molecule real-time (SMRT) DNA sequencing.The complete genome of DSM 23806T consists of one circular DNA chromosome of 6425783bp with a G+C content of 64.26%. The entire genome contains 5804 predicted coding sequences (CDS) and 55 tRNAs. Genomic island (GI) analysis showed that this strain encodes several important pathogenesis- and resistance-related genes.These…

Read More »

Sunday, July 7, 2019

High- quality draft genome sequences of eight bacteria isolated from fungus gardens grown by Trachymyrmex septentrionalis ants.

For their food source, Trachymyrmex septentrionalis ants raise symbiotic fungus gardens that contain bacteria whose functions are poorly understood. Here, we report the genome sequences of eight bacteria isolated from these fungus gardens to better describe the ecology of these strains and their potential to produce secondary metabolites in this niche.

Read More »

Sunday, July 7, 2019

Closed complete genome sequences of two nontypeable Haemophilus influenzae strains containing novel modA alleles from the sputum of patients with chronic obstructive pulmonary disease.

Nontypeable Haemophilus influenzae (NTHi) is an important bacterial pathogen that causes otitis media and exacerbations of chronic obstructive pulmonary disease (COPD). Here, we report the complete genome sequences of NTHi strains 10P129H1 and 84P36H1, isolated from COPD patients, which contain the phase-variable epigenetic regulators ModA15 and ModA18, respectively.

Read More »

Sunday, July 7, 2019

Genomic characterization of methylotrophy of Oharaeibacter diazotrophicus strain SM30T.

Oharaeibacter diazotrophicus strain SM30T, isolated from rice rhizosphere, is an aerobic, facultative lanthanide (Ln3+)-utilizing methylotroph and diazotroph that belongs to the Methylocystaceae family. In this research, the complete genome sequence of strain SM30T was determined, and its methylotrophy modules were characterized. The genome consists of one chromosome and two plasmids, comprising a total of 5,004,097 bp, and the GC content was 71.6 mol%. A total of 4497 CDSs, 67 tRNA, and 9 rRNA were encoded. Typical alpha-proteobacterial methylotrophy genes were found: pyrroloquinoline quinone (PQQ)-dependent methanol dehydrogenase (MDH) (mxaF and xoxF1-4), methylotrophy regulatory proteins (mxbDM and mxcQE), PQQ synthesis, H4F pathway, H4MPT…

Read More »

1 6 7 8 9

Subscribe for blog updates:

Archives