Menu
July 7, 2019  |  

Complete genome sequence of Rhodothermaceae bacterium RA with cellulolytic and xylanolytic activities.

Rhodothermaceae bacterium RA is a halo-thermophile isolated from a saline hot spring. Previously, the genome of this bacterium was sequenced using a HiSeq 2500 platform culminating in 91 contigs. In this report, we report on the resequencing of its complete genome using a PacBio RSII platform. The genome has a GC content of 68.3%, is 4,653,222 bp in size, and encodes 3711 genes. We are interested in understanding the carbohydrate metabolic pathway, in particular the lignocellulosic biomass degradation pathway. Strain RA harbors 57 glycosyl hydrolase (GH) genes that are affiliated with 30 families. The bacterium consists of cellulose-acting (GH 3, 5, 9, and 44) and hemicellulose-acting enzymes (GH 3, 10, and 43). A crude cell-free extract of the bacterium exhibited endoglucanase, xylanase, ß-glucosidase, and ß-xylosidase activities. The complete genome information coupled with biochemical assays confirms that strain RA is able to degrade cellulose and xylan. Therefore, strain RA is another excellent member of family Rhodothermaceae as a repository of novel and thermostable cellulolytic and hemicellulolytic enzymes.


July 7, 2019  |  

Complete genome sequence of Rhizobium sp. strain 11515TR, isolated from tomato rhizosphere in the Philippines.

Rhizobium sp. strain 11515TR was isolated from the rhizosphere of to- mato in Laguna, Philippines. The 7.07-Mb complete genome comprises three repli- cons, one chromosome, and two plasmids, with a G?C content of 59.4% and 6,720 protein-coding genes. The genome encodes gene clusters supporting rhizosphere processes, plant symbiosis, and secondary bioactive metabolites.


July 7, 2019  |  

Near-complete genome sequence of Ralstonia solanacearum T523, a phylotype I tomato phytopathogen isolated from the Philippines.

Ralstonia solanacearum strain T523 is the major phytopathogen causing tomato bacterial wilt in the Philippines. Here, we report the complete chromosome and draft megaplasmid genomes with predicted gene inventories supporting rhizo- sphere processes, extensive plant virulence effectors, and the production of bioac- tive signaling metabolites, such as ralstonin, micacocidin, and homoserine lactone.


July 7, 2019  |  

Complete genome sequence of a wild-type isolate of Caulobacter vibrioides strain CB1.

The complete genome sequence of Caulobacter vibrioides strain CB1 consists of a chromosome of 4,137,285 bp, with a GC content of 67.2% and 3,990 coding DNA sequences. This strain contains the typical genome rearrangement that is characteristic of the Caulobacter strains that are currently sequenced. However, this strain is so closely related to sequenced strain NA1000 that rearrangements were minimal. This will allow further clarification of the causes of rearrangements in the species.


July 7, 2019  |  

Draft genome sequence of the xanthocidin-producing strain Streptomyces sp. AcE210, isolated from a root nodule of Alnus glutinosa (L.).

Streptomyces sp. strain AcE210 exhibited antibacterial activity toward Gram-positive microorganisms and turned out to be a rare producer of the special- ized metabolite xanthocidin. The 10.6-Mb draft genome sequence gives insight into the complete specialized metabolite production capacity and builds the basis to find and locate the biosynthetic gene cluster of xanthocidin.


July 7, 2019  |  

Emergence of tigecycline resistance in Escherichia coli co-producing MCR-1 and NDM-5 during tigecycline salvage treatment.

Here, we report a case of severe infection caused by Escherichia coli that harbored mcr-1, blaNDM-5, and acquired resistance to tigecycline during tigecycline salvage therapy.Antimicrobial susceptibility testing, Southern blot hybridization, and complete genome sequence of the strains were carried out. The genetic characteristics of the mcr-1 and blaNDM-5 plasmids were analyzed. The whole genome sequencing of mcr-1-containing plasmid was completed. Finally, putative single nucleotide polymorphisms and deletion mutations in the tigecycline-resistant strain were predicted.Three E. coli isolates were obtained from ascites, pleural effusion, and stool of a patient; they were resistant to almost all the tested antibiotics. The first two strains separated from ascites (E-FQ) and hydrothorax (E-XS) were susceptible to amikacin and tigecycline; however, the third strain from stool (E-DB) was resistant to tigecycline after nearly 3 weeks’ treatment with tigecycline. All three isolates possessed both mcr-1 and blaNDM-5. The blaNDM-5 gene was found on the IncX3 plasmid, whereas the mcr-1, fosA3 and blaCTX-M-14 were located on the IncHI2 plasmid. Mutations in acrB and lon were the reason for the resistance to tigecycline.This is the first report of a colistin-, carbapenem-, and tigecycline-resistant E. coli in China. Tigecycline resistance acquired during tigecycline therapy is of great concern for us because tigecycline is a drug of last resort to treat carbapenem-resistant Gram-negative bacterial infections. Furthermore, the transmission of such extensively drug-resistant isolates may pose a great threat to public health.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.