Menu
September 22, 2019

The unique evolution of the pig LRC, a single KIR but expansion of LILR and a novel Ig receptor family.

The leukocyte receptor complex (LRC) encodes numerous immunoglobulin (Ig)-like receptors involved in innate immunity. These include the killer-cell Ig-like receptors (KIR) and the leukocyte Ig-like receptors (LILR) which can be polymorphic and vary greatly in number between species. Using the recent long-read genome assembly, Sscrofa11.1, we have characterized the porcine LRC on chromosome 6. We identified a ~?197-kb region containing numerous LILR genes that were missing in previous assemblies. Out of 17 such LILR genes and fragments, six encode functional proteins, of which three are inhibitory and three are activating, while the majority of pseudogenes had the potential to encode activating receptors. Elsewhere in the LRC, between FCAR and GP6, we identified a novel gene that encodes two Ig-like domains and a long inhibitory intracellular tail. Comparison with two other porcine assemblies revealed a second, nearly identical, non-functional gene encoding a short intracellular tail with ambiguous function. These novel genes were found in a diverse range of mammalian species, including a pseudogene in humans, and typically consist of a single long-tailed receptor and a variable number of short-tailed receptors. Using porcine transcriptome data, both the novel inhibitory gene and the LILR were highly expressed in peripheral blood, while the single KIR gene, KIR2DL1, was either very poorly expressed or not at all. These observations are a prerequisite for improved understanding of immune cell functions in the pig and other species.


September 22, 2019

Genomic analysis of multi-resistant Staphylococcus capitis associated with neonatal sepsis.

Coagulase-negative staphylococci (CoNS), such as Staphylococcus capitis, are major causes of bloodstream infections in neonatal intensive care units (NICUs). Recently, a distinct clone of S. capitis (designated S. capitis NRCS-A) has emerged as an important pathogen in NICUs internationally. Here, 122 S. capitis isolates from New Zealand (NZ) underwent whole-genome sequencing (WGS), and these data were supplemented with publicly available S. capitis sequence reads. Phylogenetic and comparative genomic analyses were performed, as were phenotypic assessments of antimicrobial resistance, biofilm formation, and plasmid segregational stability on representative isolates. A distinct lineage of S. capitis was identified in NZ associated with neonates and the NICU environment. Isolates from this lineage produced increased levels of biofilm, displayed higher levels of tolerance to chlorhexidine, and were multidrug resistant. Although similar to globally circulating NICU-associated S. capitis strains at a core-genome level, NZ NICU S. capitis isolates carried a novel stably maintained multidrug-resistant plasmid that was not present in non-NICU isolates. Neonatal blood culture isolates were indistinguishable from environmental S. capitis isolates found on fomites, such as stethoscopes and neonatal incubators, but were generally distinct from those isolates carried by NICU staff. This work implicates the NICU environment as a potential reservoir for neonatal sepsis caused by S. capitis and highlights the capacity of genomics-based tracking and surveillance to inform future hospital infection control practices aimed at containing the spread of this important neonatal pathogen. Copyright © 2018 Carter et al.


September 22, 2019

Genomic characterization reveals significant divergence within Chlorella sorokiniana (Chlorellales, Trebouxiophyceae)

Selection of highly productive algal strains is crucial for establishing economically viable biomass and biopro- duct cultivation systems. Characterization of algal genomes, including understanding strain-specific differences in genome content and architecture is a critical step in this process. Using genomic analyses, we demonstrate significant differences between three strains of Chlorella sorokiniana (strain 1228, UTEX 1230, and DOE1412). We found that unique, strain-specific genes comprise a substantial proportion of each genome, and genomic regions with> 80% local nucleotide identity constitute <15% of each genome among the strains, indicating substantial strain specific evolution. Furthermore, cataloging of meiosis and other sex-related genes in C. sor- okiniana strains suggests strategic breeding could be utilized to improve biomass and bioproduct yields if a sexual cycle can be characterized. Finally, preliminary investigation of epigenetic machinery suggests the pre- sence of potentially unique transcriptional regulation in each strain. Our data demonstrate that these three C. sorokiniana strains represent significantly different genomic content. Based on these findings, we propose in- dividualized assessment of each strain for potential performance in cultivation systems.


September 22, 2019

Phylogenomics of colistin-susceptible and resistant XDR Acinetobacter baumannii.

Acinetobacter baumannii is a healthcare-associated pathogen with high rates of carbapenem resistance. Colistin is now routinely used for treatment of infections by this pathogen. However, colistin use has been associated with development of resistance to this agent.To elucidate the phylogenomics of colistin-susceptible and -resistant A. baumannii strain pairs from a cohort of hospitalized patients at a tertiary medical centre in the USA.WGS data from 21 pairs of colistin-susceptible and -resistant, XDR clinical strains were obtained and compared using phylogeny of aligned genome sequences, assessment of pairwise SNP differences and gene content.Fourteen patients had colistin-resistant strains that were highly genetically related to their own original susceptible strain with a median pairwise SNP distance of 5.5 (range 1-40 SNPs), while seven other strain pairs were divergent with =84 SNP differences. In addition, several strains from different patients formed distinct clusters on the phylogeny in keeping with closely linked transmission chains. The majority of colistin-resistant strains contained non-synonymous mutations within the pmrAB locus suggesting a central role for pmrAB mutations in colistin resistance. Excellent genotype-phenotype correlation was also observed for carbapenems, aminoglycosides and tetracyclines.The findings suggest that colistin resistance in the clinical setting arises through both in vivo evolution from colistin-susceptible strains and reinfection by unrelated colistin-resistant strains, the latter of which may involve patient-to-patient transmission.


September 22, 2019

Plasmid and chromosomal integration of four novel blaIMP-carrying transposons from Pseudomonas aeruginosa, Klebsiella pneumoniae and an Enterobacter sp.

To provide detailed genetic characterization of four novel blaIMP-carrying transposons from Pseudomonas aeruginosa, Klebsiella pneumoniae and an Enterobacter sp.P. aeruginosa 60512, K. pneumoniae 447, P. aeruginosa 12939 and Enterobacter sp. A1137 were subjected to genome sequencing. The complete nucleotide sequences of two plasmids (p60512-IMP from the 60512 isolate and p447-IMP from the 447 isolate) and two chromosomes (the 12939 and A1137 isolates) were determined, then a genomic comparison of p60512-IMP, p447-IMP and four novel blaIMP-carrying transposons (Tn6394, Tn6375, Tn6411 and Tn6397) with related sequences was performed. Transferability of the blaIMP gene and bacterial antimicrobial susceptibility were tested.Tn6394 and Tn6375 were located in p60512-IMP and p447-IMP, respectively, while Tn6411 and Tn6397 were integrated into the 12939 and A1137 chromosomes, respectively. Tn6394 was an ISPa17-based transposition unit that harboured the integron In992 (carrying blaIMP-1). In73 (carrying blaIMP-8), In73 and In992, together with the ISEcp1:IS1R-blaCTX-M-14-IS903D unit, the macAB-tolC region and the truncated aacC2-tmrB region, respectively, were integrated into the prototype transposons Tn1722, Tn1696 and Tn7, respectively, generating the Tn3-family unit transposons, Tn6375 and Tn6378, and the Tn7-family unit transposon Tn6411, respectively. Tn6397 was a large integrative and conjugative element carrying Tn6378.Complex events of transposition and homologous recombination have occurred during the original formation and further plasmid and chromosomal integration of these four transposons, promoting accumulation and spread of antimicrobial resistance genes.


September 22, 2019

Full-length extension of HLA allele sequences by HLA allele-specific hemizygous Sanger sequencing (SSBT).

The gold standard for typing at the allele level of the highly polymorphic Human Leucocyte Antigen (HLA) gene system is sequence based typing. Since sequencing strategies have mainly focused on identification of the peptide binding groove, full-length sequence information is lacking for >90% of the HLA alleles. One of the goals of the 17th IHIWS workshop is to establish full-length sequences for as many HLA alleles as possible. In our component “Extension of HLA sequences by full-length HLA allele-specific hemizygous Sanger sequencing” we have used full-length hemizygous Sanger Sequence Based Typing to achieve this goal. We selected samples of which full length sequences were not available in the IPD-IMGT/HLA database. In total we have generated the full-length sequences of 48 HLA-A, 45 -B and 31 -C alleles. For HLA-A extended alleles, 39/48 showed no intron differences compared to the first allele of the corresponding allele group, for HLA-B this was 26/45 and for HLA-C 20/31. Comparing the intron sequences to other alleles of the same allele group revealed that in 5/48 HLA-A, 16/45 HLA-B and 8/31 HLA-C alleles the intron sequence was identical to another allele of the same allele group. In the remaining 10 cases, the sequence either showed polymorphism at a conserved nucleotide or was the result of a gene conversion event. Elucidation of the full-length sequence gives insight in the polymorphic content of the alleles and facilitates the identification of its evolutionary origin. Copyright © 2018 American Society for Histocompatibility and Immunogenetics. All rights reserved.


September 22, 2019

Tracing back multidrug-resistant bacteria in fresh herb production: from chive to source through the irrigation water chain.

Environmental antibiotic-resistant bacteria (ARB) can be transferred to humans through foods. Fresh produce in particular is an ideal vector due to frequent raw consumption. A major contamination source of fresh produce is irrigation water. We hypothesized that water quality significantly affects loads of ARB and their diversity on fresh produce despite various other contamination sources present under agricultural practice conditions. Chive irrigated from an open-top reservoir or sterile-filtered water (control) was examined. Heterotrophic plate counts (HPC) and ARB were determined for water and chive with emphasis on Escherichia coli and Enterococcus spp. High HPC of freshly planted chive decreased over time and were significantly lower on control- vs. reservoir-irrigated chive at harvest (1.3 log (CFU/g) lower). Ciprofloxacin- and ceftazidime-resistant bacteria were significantly lower on control-irrigated chive at harvest and end of shelf life (up to 1.8 log (CFU/g) lower). Escherichia coli and Enterococcus spp. repeatedly isolated from water and chive proved resistant to up to six or four antibiotic classes (80% or 49% multidrug-resistant, respectively). Microbial source tracking identified E. coli-ST1056 along the irrigation chain and on chive. Whole-genome sequencing revealed that E. coli-ST1056 from both environments were clonal and carried the same transmissible multidrug-resistance plasmid, proving water as source of chive contamination. These findings emphasize the urgent need for guidelines concerning ARB in irrigation water and development of affordable water disinfection technologies to diminish ARB on irrigated produce.


September 22, 2019

Full gene HLA class I sequences of 79 novel and 519 mostly uncommon alleles from a large United States registry population.

HLA class I assignments were obtained at single genotype, G-level resolution from 98?855 volunteers for an unrelated donor registry in the United States. In spite of the diverse ancestry of the volunteers, over 99% of the assignments at each locus are common. Within this population, 52 novel alleles differing in exons 2 and 3 are identified and characterized. Previously reported alleles with incomplete sequences in the IPD-IMGT/HLA database (n?=?519) were selected for full gene sequencing and, from this sampling, another 27 novel alleles are described.© 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.


September 22, 2019

Genome mining of Streptomyces xinghaiensis NRRL B-24674T for the discovery of the gene cluster involved in anticomplement activities and detection of novel xiamycin analogs.

Marine actinobacterium Streptomyces xinghaiensis NRRL B-24674T has been characterized as a novel species, but thus far, its biosynthetic potential remains unexplored. In this study, the high-quality genome sequence of S. xinghaiensis NRRL B-24674T was obtained, and the production of anticomplement agents, xiamycin analogs, and siderophores was investigated by genome mining. Anticomplement compounds are valuable for combating numerous diseases caused by the abnormal activation of the human complement system. The biosynthetic gene cluster (BGC) nrps1 resembles that of complestatins, which are potent microbial-derived anticomplement agents. The identification of the nrps1 BGC revealed a core peptide that differed from that in complestatin; thus, we studied the anticomplement activity of this strain. The culture broth of S. xinghaiensis NRRL B-24674T displayed good anticomplement activity. Subsequently, the disruption of the genes in the nrps1 BGC resulted in the loss of anticomplement activity, confirming the involvement of this BGC in the biosynthesis of anticomplement agents. In addition, the mining of the BGC tep5, which resembles that of the antiviral pentacyclic indolosesquiterpene xiamycin, resulted in the discovery of nine xiamycin analogs, including three novel compounds. In addition to the BGCs responsible for desferrioxamine B, neomycin, ectoine, and carotenoid, 18 BGCs present in the genome are predicted to be novel. The results of this study unveil the potential of S. xinghaiensis as a producer of novel anticomplement agents and provide a basis for further exploration of the biosynthetic potential of S. xinghaiensis NRRL B-24674T for the discovery of novel bioactive compounds by genome mining.


September 22, 2019

Genomic evidence for asymmetric introgression by sexual selection in the common wall lizard.

Strongly selected characters can be transferred from one lineage to another with limited genetic exchange, resulting in asymmetric introgression and a mosaic genome in the receiving population. However, systems are rarely sufficiently well studied to link the pattern of introgression to its underlying process. Male common wall lizards in western Italy exhibit exaggeration of a suite of sexually selected characters that make them outcompete males from a distantly related lineage that lack these characters. This results in asymmetric hybridization and adaptive introgression of the suite of characters following secondary contact. We developed genomewide markers to infer the demographic history of gene flow between different genetic lineages, identify the spread of the sexually selected syndrome, and test the prediction that introgression should be asymmetric and heterogeneous across the genome. Our results show that secondary contact was accompanied by gene flow in both directions across most of the genome, but with approximately 3% of the genome showing highly asymmetric introgression in the predicted direction. Demographic simulations reveal that this asymmetric gene flow is more recent than the initial secondary contact, and the data suggest that the exaggerated male sexual characters originated within the Italian lineage and subsequently spread throughout this lineage before eventually reaching the contact zone. These results demonstrate that sexual selection can cause a suite of characters to spread throughout both closely and distantly related lineages with limited gene flow across the genome at large.© 2018 John Wiley & Sons Ltd.


September 22, 2019

Complete genome sequencing of Comamonas kerstersii 8943, a causative agent for peritonitis.

Because of poor differentiation among the members of genus Comamonas using phenotypic methods, human infections caused by C. kerstersii are sporadically reported in the literature. Here, we represent the first complete genome sequence of C. kerstersii 8943, which caused peritonitis in a patient with continuous ambulatory peritoneal dialysis (CAPD). The complete genome with no gaps was obtained using third-generation Pacific Biosciences (PacBio) RSII sequencing system with single-molecule real-time (SMRT) analysis. Protein-coding genes, rRNAs and tRNAs were predicted. Functional annotations of the genome using different databases revealed several genes related to pathogenicity including antibiotic resistance genes and prophages. Our work demonstrates that whole genome sequencing can enhance the resolution of clinical investigations and our data can be used as a reference genome during the rapid diagnosis of C. kerstersii infections in the future.


September 22, 2019

Characterization of Streptococcus pluranimalium from a cattle with mastitis by whole genome sequencing and functional validation.

Streptococcus pluranimalium is a new member of the Streptococcus genus isolated from multiple different animal hosts. It has been identified as a pathogen associated with subclinical mastitis, valvular endocarditis and septicaemia in animals. Moreover, this bacterium has emerged as a new pathogen for human infective endocarditis and brain abscess. However, the patho-biological properties of S. pluranimalium remain virtually unknown. The aim of this study was to determine the complete genome sequence of S. pluranimalium strain TH11417 isolated from a cattle with mastitis, and to characterize its antimicrobial resistance, virulence, and carbon catabolism.The genome of S. pluranimalium TH11417, determined by single-molecule real-time (SMRT) sequencing, consists of 2,065,522 base pair (bp) with a G?+?C content of 38.65%, 2,007 predicted coding sequence (CDS), 58 transfer RNA (tRNA) genes and five ribosome RNA (rRNA) operons. It contains a novel ISSpl1 element (a memeber of the IS3 family) and a ?11417.1 prophage that carries the mef(A), msr(D) and lnu(C) genes. Consistently, our antimicrobial susceptibility test confirmed that S. pluranimalium TH11417 was resistant to erythromycin and lincomycin. However, this strain did not show virulence in murine pneumonia (intranasal inoculation, 107 colony forming unit – CFU) and sepsis (intraperitoneal inoculation, 107 CFU) models. Additionally, this strain is able to grow with glucose, lactose or galactose as the sole carbon source, and possesses a lactose-specific phosphoenolpyruvate-dependent phosphotransferase system (PTS).We reported the first whole genome sequence of S. pluranimalium isolated from a cattle with mastitis. It harbors a prophage carrying the mef(A), msr(D) and lnu(C) genes, and is avirulent in the murine infection model.


September 22, 2019

Streptococcus suis contains multiple phase-variable methyltransferases that show a discrete lineage distribution.

Streptococcus suis is a major pathogen of swine, responsible for a number of chronic and acute infections, and is also emerging as a major zoonotic pathogen, particularly in South-East Asia. Our study of a diverse population of S. suis shows that this organism contains both Type I and Type III phase-variable methyltransferases. In all previous examples, phase-variation of methyltransferases results in genome wide methylation differences, and results in differential regulation of multiple genes, a system known as the phasevarion (phase-variable regulon). We hypothesized that each variant in the Type I and Type III systems encoded a methyltransferase with a unique specificity, and could therefore control a distinct phasevarion, either by recombination-driven shuffling between different specificities (Type I) or by biphasic on-off switching via simple sequence repeats (Type III). Here, we present the identification of the target specificities for each Type III allelic variant from S. suis using single-molecule, real-time methylome analysis. We demonstrate phase-variation is occurring in both Type I and Type III methyltransferases, and show a distinct association between methyltransferase type and presence, and population clades. In addition, we show that the phase-variable Type I methyltransferase was likely acquired at the origin of a highly virulent zoonotic sub-population.


September 22, 2019

Whole-genome sequencing of Chinese yellow catfish provides a valuable genetic resource for high-throughput identification of toxin genes.

Naturally derived toxins from animals are good raw materials for drug development. As a representative venomous teleost, Chinese yellow catfish (Pelteobagrus fulvidraco) can provide valuable resources for studies on toxin genes. Its venom glands are located in the pectoral and dorsal fins. Although with such interesting biologic traits and great value in economy, Chinese yellow catfish is still lacking a sequenced genome. Here, we report a high-quality genome assembly of Chinese yellow catfish using a combination of next-generation Illumina and third-generation PacBio sequencing platforms. The final assembly reached 714 Mb, with a contig N50 of 970 kb and a scaffold N50 of 3.65 Mb, respectively. We also annotated 21,562 protein-coding genes, in which 97.59% were assigned at least one functional annotation. Based on the genome sequence, we analyzed toxin genes in Chinese yellow catfish. Finally, we identified 207 toxin genes and classified them into three major groups. Interestingly, we also expanded a previously reported sex-related region (to ˜6 Mb) in the achieved genome assembly, and localized two important toxin genes within this region. In summary, we assembled a high-quality genome of Chinese yellow catfish and performed high-throughput identification of toxin genes from a genomic view. Therefore, the limited number of toxin sequences in public databases will be remarkably improved once we integrate multi-omics data from more and more sequenced species.


September 22, 2019

Genomic insights into virulence mechanisms of Leishmania donovani: evidence from an atypical strain.

Leishmaniasis is a neglected tropical disease with diverse clinical phenotypes, determined by parasite, host and vector interactions. Despite the advances in molecular biology and the availability of more Leishmania genome references in recent years, the association between parasite species and distinct clinical phenotypes remains poorly understood. We present a genomic comparison of an atypical variant of Leishmania donovani from a South Asian focus, where it mostly causes cutaneous form of leishmaniasis.Clinical isolates from six cutaneous leishmaniasis patients (CL-SL); 2 of whom were poor responders to antimony (CL-PR), and two visceral leishmaniasis patients (VL-SL) were sequenced on an Illumina MiSeq platform. Chromosome aneuploidy was observed in both groups but was more frequent in CL-SL. 248 genes differed by 2 fold or more in copy number among the two groups. Genes involved in amino acid use (LdBPK_271940) and energy metabolism (LdBPK_271950), predominated the VL-SL group with the same distribution pattern reflected in gene tandem arrays. Genes encoding amastins were present in higher copy numbers in VL-SL and CL-PR as well as being among predicted pseudogenes in CL-SL. Both chromosome and SNP profiles showed CL-SL and VL-SL to form two distinct groups. While expected heterozygosity was much higher in VL-SL, SNP allele frequency patterns did not suggest potential recent recombination breakpoints. The SNP/indel profile obtained using the more recently generated PacBio sequence did not vary markedly from that based on the standard LdBPK282A1 reference. Several genes previously associated with resistance to antimonials were observed in higher copy numbers in the analysis of CL-PR. H-locus amplification was seen in one cutaneous isolate which however did not belong to the CL-PR group.The data presented suggests that intra species variations at chromosome and gene level are more likely to influence differences in tropism as well as response to treatment, and contributes to greater understanding of parasite molecular mechanisms underpinning these differences. These findings should be substantiated with a larger sample number and expression/functional studies.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.