Menu
July 7, 2019  |  

Genome characterization of two bile-isolated Vibrio fluvialis strains: an insight into pathogenicity and bile salt adaption.

Vibrio fluvialis is recognized as an emerging pathogen. However, not much is known about the mechanism of its pathogenesis, and its adaptation to a special niche such as the gall bladder. Here we describe two V. fluvialis strains that cause acute cholecystitis. It is noteworthy that both strains were susceptible to all antibiotics tested, which is in contrast to previous studies, suggesting substantial genetic diversity among V. fluvialis isolates. In agreement with their survival and growth in the gall bladder, the genomes of strains 12605 and 3663 contain a considerable number of genes that confer resistance to bile, including toxR, omp U, tolC, cmeABC, rlpB, yrbK, rpoS, damX and gltK. Furthermore, integrative and conjugative elements (ICEs), virulence factors and prophage regions were also detected in strains 12605 and 3663, reflecting their flexibility in recombination during the evolution of pathogenicity. Comparative analysis of nine available genomes of V. fluvialis revealed a core genome consisting of 3,147 genes. Our results highlight the association of V. fluvialis with a rare disease profile and shed light on the evolution of pathogenesis and niche adaptation of V. fluvialis.


July 7, 2019  |  

Parallel evolution of two clades of a major Atlantic endemic Vibrio parahaemolyticus pathogen lineage by independent acquisition of related pathogenicity islands.

Shellfish-transmitted Vibrio parahaemolyticus infections have recently increased from locations with historically low disease incidence, such as the Northeast United States (US). This change coincided with a bacterial population shift towards human pathogenic variants occurring in part through the introduction of several Pacific native lineages (ST36, ST43 and ST636) to near-shore areas off the Atlantic coast of the Northeast US. Concomitantly, ST631 emerged as a major endemic pathogen. Phylogenetic trees of clinical and environmental isolates indicated that two clades diverged from a common ST631 ancestor, and in each of these clades, a human pathogenic variant evolved independently through acquisition of distinct Vibrio pathogenicity islands (VPaI). These VPaI differ from each other and bear little resemblance to hemolysin-containing VPaI from isolates of the pandemic clonal complex. Clade I ST631 isolates either harbored no hemolysins, or contained a chromosome I-inserted island we call VPaIß that encodes a type three secretion system (T3SS2ß) typical of Trh hemolysin-producers. The more clinically prevalent and clonal ST631 clade II had an island we call VPaI? that encodes both tdh and trh and that was inserted in chromosome II. VPaI? was derived from VPaIß but with some additional acquired elements in common with VPaI carried by pandemic isolates, exemplifying the mosaic nature of pathogenicity islands. Genomics comparisons and amplicon assays identified VPaI?-type islands containing tdh inserted adjacent to the ure cluster in the three introduced Pacific and most other emergent lineages. that collectively cause 67% of Northeast US infections as of 2016.IMPORTANCE The availability of three different hemolysin genotypes in the ST631 lineage provided a unique opportunity to employ genome comparisons to further our understanding of the processes underlying pathogen evolution. The fact that two different pathogenic clades arose in parallel from the same potentially benign lineage by independent VPaI acquisition is surprising considering the historically low prevalence of community members harboring VPaI in waters along the Northeast US coast that could serve as the source of this material. This illustrates a possible predisposition of some lineages to not only acquire foreign DNA but also to become human pathogens. Whereas the underlying cause for the expansion of V. parahaemolyticus lineages harboring VPaI? along the US Atlantic coast and spread of this element to multiple lineages that underlies disease emergence is not known, this work underscores the need to define the environment factors that favor bacteria harboring VPaI in locations of emergent disease. Copyright © 2017 American Society for Microbiology.


July 7, 2019  |  

Complete genome sequence of acute hepatopancreatic necrosis disease-causing Vibrio campbellii LA16-V1, isolated from Penaeus vannamei cultured in a Latin American country.

We report here the complete genome sequence of Vibrio campbellii, isolated from Penaeus vannamei cultured in a Latin American country. The Tn3-like transposon and pirAB genes were encoded on the plasmid pLA16-2. These data support the geographical variations in the virulence plasmid found among acute hepatopancreatic necrosis disease (AHPND)-causing Vibrio isolates from Latin America and Asia. Copyright © 2017 Ahn et al.


July 7, 2019  |  

Exception to the rule: Genomic characterization of naturally occurring unusual Vibrio cholerae strains with a single chromosome.

The genetic make-up of most bacteria is encoded in a single chromosome while about 10% have more than one chromosome. Among these, Vibrio cholerae, with two chromosomes, has served as a model system to study various aspects of chromosome maintenance, mainly replication, and faithful partitioning of multipartite genomes. Here, we describe the genomic characterization of strains that are an exception to the two chromosome rules: naturally occurring single-chromosome V. cholerae. Whole genome sequence analyses of NSCV1 and NSCV2 (natural single-chromosome vibrio) revealed that the Chr1 and Chr2 fusion junctions contain prophages, IS elements, and direct repeats, in addition to large-scale chromosomal rearrangements such as inversions, insertions, and long tandem repeats elsewhere in the chromosome compared to prototypical two chromosome V. cholerae genomes. Many of the known cholera virulence factors are absent. The two origins of replication and associated genes are generally intact with synonymous mutations in some genes, as are recA and mismatch repair (MMR) genes dam, mutH, and mutL; MutS function is probably impaired in NSCV2. These strains are ideal tools for studying mechanistic aspects of maintenance of chromosomes with multiple origins and other rearrangements and the biological, functional, and evolutionary significance of multipartite genome architecture in general.


July 7, 2019  |  

Complete genome sequence of the pathogenic Vibrio vulnificus type strain ATCC 27562.

Vibrio vulnificus has the highest death rate and economic burden per case of any foodborne pathogen in the United States. A complete genome sequence of the type strain promotes comparative analyses with other clinical and environmental isolates, improving our understanding of this important human pathogen and successful environmental organism. Copyright © 2017 Rusch and Rowe-Magnus.


July 7, 2019  |  

Genomic variation and evolution of Vibrio parahaemolyticus ST36 over the course of a transcontinental epidemic expansion.

Vibrio parahaemolyticus is the leading cause of seafood-related infections with illnesses undergoing a geographic expansion. In this process of expansion, the most fundamental change has been the transition from infections caused by local strains to the surge of pandemic clonal types. Pandemic clone sequence type 3 (ST3) was the only example of transcontinental spreading until 2012, when ST36 was detected outside the region where it is endemic in the U.S. Pacific Northwest causing infections along the U.S. northeast coast and Spain. Here, we used genome-wide analyses to reconstruct the evolutionary history of the V. parahaemolyticus ST36 clone over the course of its geographic expansion during the previous 25 years. The origin of this lineage was estimated to be in ~1985. By 1995, a new variant emerged in the region and quickly replaced the old clone, which has not been detected since 2000. The new Pacific Northwest (PNW) lineage was responsible for the first cases associated with this clone outside the Pacific Northwest region. After several introductions into the northeast coast, the new PNW clone differentiated into a highly dynamic group that continues to cause illness on the northeast coast of the United States. Surprisingly, the strains detected in Europe in 2012 diverged from this ancestral group around 2000 and have conserved genetic features present only in the old PNW lineage. Recombination was identified as the major driver of diversification, with some preliminary observations suggesting a trend toward a more specialized lifestyle, which may represent a critical element in the expansion of epidemics under scenarios of coastal warming.IMPORTANCEVibrio parahaemolyticus and Vibrio cholerae represent the only two instances of pandemic expansions of human pathogens originating in the marine environment. However, while the current pandemic of V. cholerae emerged more than 50 years ago, the global expansion of V. parahaemolyticus is a recent phenomenon. These modern expansions provide an exceptional opportunity to study the evolutionary process of these pathogens at first hand and gain an understanding of the mechanisms shaping the epidemic dynamics of these diseases, in particular, the emergence, dispersal, and successful introduction in new regions facilitating global spreading of infections. In this study, we used genomic analysis to examine the evolutionary divergence that has occurred over the course of the most recent transcontinental expansion of a pathogenic Vibrio, the spreading of the V. parahaemolyticus sequence type 36 clone from the region where it is endemic on the Pacific coast of North America to the east coast of the United States and finally to the west coast of Europe.


July 7, 2019  |  

Complete genome sequence of Vibrio campbellii LMB 29 isolated from red drum with four native megaplasmids.

Vibrio spp. are the most common pathogens for animals reared in aquaculture. Vibrio campbellii, which is often involved in shrimp, fish and mollusks diseases, is widely distributed in the marine environment worldwide, but our knowledge about its pathogenesis and antimicrobial resistance is very limited. The existence of this knowledge gap is at least partially because that V. campbellii was originally classified as Vibrio harveyi, and the detailed information of its comparative genome analysis to other Vibrio spp. is currently lacking. In this study, the complete genome of a V. campbellii predominant strain, LMB29, was determined by MiSeq in conjunction with PacBio SMRT sequencing. This genome consists of two circular DNA chromosomes and four megaplasmids. Comparative genome analysis indicates that LMB29 shares a 96.66% similarity (average nucleotide identity) with the V. campbellii ATCC strain BAA-1116 based on a 75% AF (average fraction) calculations, and its functional profile is very similar to V. campbellii E1 and V. campbellii CAIM115. Both type III secretion system (T3SS) and type VI secretion system (T6SS), along with the tlh gene which encodes a thermolabile hemolysin, are present in LMB29 which may contribute to the bacterial pathogenesis. The virulence of this strain was experimental confirmed by performing a LDH assay on a fish cell infection model, and cell death was observed as early as within 3 h post infection. Thirty-seven antimicrobial resistance genes (>45% identity) were predicted in LMB29 which includes a novel rifampicin ADP ribosyltransferase, arr-9, in plasmid pLMB157. The gene arr-9 was predicted on a genomic island with horizontal transferable potentials which may facilitate the rifampicin resistance dissemination. Future researches are needed to explore the pathogenesis of V. campbellii LMB29, but the availability of this genome sequence will certainly aid as a basis for further analysis.


July 7, 2019  |  

pirAB(vp) -bearing Vibrio parahaemolyticus and Vibrio campbellii pathogens isolated from the same AHPND-affected pond possess highly similar pathogenic plasmids.

Acute hepatopancreatic necrosis disease (AHPND) is a severe shrimp disease originally shown to be caused by virulent strains of Vibrio parahaemolyticus (VPAHPND). Rare cases of AHPND caused by Vibrio species other than V. parahaemolyticus were reported. We compared an AHPND-causing V. campbellii (VCAHPND) and a VPAHPND isolate from the same AHPND-affected pond. Both strains are positive for the virulence genes pirAB(vp) . Immersion challenge test with Litopenaeus vannamei indicated the two strains possessed similar pathogenicity. Complete genome comparison showed that the pirAB(vp) -bearing plasmids in the two strains were highly homologous, and they both shared high homologies with plasmid pVA1, the reported pirAB(vp) -bearing plasmid. Conjugation and DNA-uptake genes were found on the pVA1-type plasmids and the host chromosomes, respectively, which may facilitate the dissemination of pirAB(vp) . Novel variations likely driven by ISVal1 in the genetic contexts of the pirAB(vp) genes were found in the two strains. Moreover, the VCAHPND isolate additionally contains multiple antibiotic resistance genes, which may bring difficulties to control its future outbreak. The dissemination of the pirAB(vp) in non-parahaemolyticus Vibrio also rises the concern of missing detection in industrial settings since the isolation method currently used mainly targeting V. parahaemolyticus. This study provides timely information for better understanding of the causes of AHPND and molecular epidemiology of pirAB(vp) and also appeals for precautions to encounter the dissemination of the hazardous genes.


July 7, 2019  |  

Complete genome sequence of the Vibrio vulnificus strain VV2014DJH, a human-pathogenic bacterium isolated from a death case in China.

Vibrio vulnificus, an opportunistic pathogen, is the causative agent of life-threatening septicemia and severe wound infections. However, the pathogenicity and virulence factors of V. vulnificus are not fully understood. Here we report the complete genome sequence of V. vulnificus VV2014DJH, which was isolated from a death case.The genome of the V. vulnificus VV2014DJH contains two circular chromosomes with a mean G+C content of 46.8%, but does not consists of any plasmids. The chromosome I and chromosome II consist of 3,303,590 and 1,770,972 bp, respectively. In addition, the genome consists of 4617 protein coding genes, 172 RNA genes and type I, II and III secretion systems were predicted.In this study, the genomic information of the V. vulnificus VV2014DJH has been described. The information would contribute to the increasing scope and depth of Vibrio genome database, and provide insights into the pathogenicity and virulence factors of V. vulnificus.


July 7, 2019  |  

Characterization of VCC-1, a novel ambler class A carbapenemase from Vibrio cholerae isolated from imported retail shrimp sold in Canada.

One of the core goals of the Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS) is to monitor major meat commodities for antimicrobial resistance. Targeted studies with methodologies based on core surveillance protocols are used to examine other foods, e.g., seafood, for antimicrobial resistance to detect resistances of concern to public health. Here we report the discovery of a novel Ambler class A carbapenemase that was identified in a nontoxigenic strain of Vibrio cholerae (N14-02106) isolated from shrimp that was sold for human consumption in Canada. V. cholerae N14-02106 was resistant to penicillins, carbapenems, and monobactam antibiotics; however, PCR did not detect common ß-lactamases. Bioinformatic analysis of the whole-genome sequence of V. cholerae N14-02106 revealed on the large chromosome a novel carbapenemase (referred to here as VCC-1, for Vibrio cholerae carbapenemase 1) with sequence similarity to class A enzymes. Two copies of blaVCC-1 separated and flanked by ISVch9 (i.e., 3 copies of ISVch9) were found in an acquired 8.5-kb region inserted into a VrgG family protein gene. Cloned blaVCC-1 conferred a ß-lactam resistance profile similar to that in V. cholerae N14-02106 when it was transformed into a susceptible laboratory strain of Escherichia coli. Purified VCC-1 was found to hydrolyze penicillins, 1st-generation cephalosporins, aztreonam, and carbapenems, whereas 2nd- and 3rd-generation cephalosporins were poor substrates. Using nitrocefin as a reporter substrate, VCC-1 was moderately inhibited by clavulanic acid and tazobactam but not EDTA. In this report, we present the discovery of a novel class A carbapenemase from the food supply. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

Characterization of an IncA/C multidrug resistance plasmid in Vibrio alginolyticus.

Cephalosporin-resistant Vibrio alginolyticus were firstly isolated from food products with ß-lactamases, blaPER-1, blaVEB-1 and blaCMY-2, being the major mechanisms mediating cephalosporin resistance. The complete sequence of a multidrug resistance plasmid, pVAS3-1, harboring the blaCMY-2 and qnrVC4 genes was decoded in this study. Its backbone exhibited genetic homology to known IncA/C plasmids recoverable from Enterobacteriaceae species, suggesting its possible origin from Enterobacteriaceae. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

Complete genome sequence of Vibrio parahaemolyticus FORC_023 isolated from raw fish storage water.

Vibrio parahaemolyticusis a Gram-negative halophilic bacterium that causes food-borne gastroenteritis in humans who consumeV. parahaemolyticus-contaminated seafood.The FORC_023 strain was isolated from raw fish storage water, containing live fish at a sashimi restaurant. Here, we aimed to sequence and characterize the genome of the FORC_023 strain. The genome of the FORC_023 strain showed two circular chromosomes, which contained 4227 open reading frames (ORFs), 131 tRNA genes and 37 rRNA genes. Although the genome of FORC_023 did not include major virulence genes, such as genes encoding thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH), it contained genes encoding other hemolysins, secretion systems, iron uptake-related proteins and severalV. parahaemolyticusislands. The highest average nucleotide identity value was obtained between the FORC_023 strain and UCM-V493 (CP007004-6). Comparative genomic analysis of FORC_023 with UCM-V493 revealed that FORC_023 carried an additional genomic region encoding virulence factors, such as repeats-in-toxin and type II secretion factors. Furthermore,in vitrocytotoxicity testing showed that FORC_023 exhibited a high level of cytotoxicity toward INT-407 human epithelial cells. These results suggested that the FORC_023 strain may be a food-borne pathogen.© FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.


July 7, 2019  |  

Complete genome sequence of Vibrio alginolyticus ATCC 33787(T) isolated from seawater with three native megaplasmids.

Vibrio alginolyticus, an opportunistic pathogen, is commonly associated with vibriosis in fish and shellfish and can also cause superficial and ear infections in humans. V. alginolyticus ATCC 33787(T) was originally isolated from seawater and has been used as one of the type strains for exploring the virulence factors of marine bacteria and for developing vaccine against vibriosis. Here we sequenced and assembled the whole genome of this strain, and identified three megaplasmids and three Type VI secretion systems, thus providing useful information for the study of virulence factors and for the development of vaccine for Vibrio. Copyright © 2016. Published by Elsevier B.V.


July 7, 2019  |  

Complete genome sequence of Vibrio vulnificus FORC_017 isolated from a patient with a hemorrhagic rash after consuming raw dotted gizzard shad.

Vibrio vulnificus, a resident in the human gut, is frequently found in seafood, causing food-borne illnesses including gastroenteritis and severe septicemia. While V. vulnificus has been known to be one of the major food-borne pathogens, pathogenicity and virulence factors are not fully understood yet. To extend our understanding of the pathogenesis of V. vulnificus at the genomic level, the genome of V. vulnificus FORC_017 isolated from a female patient experiencing a hemorrhagic rash was completely sequenced and analyzed.Three discontinuous contigs were generated from a hybrid assembly using Illumina MiSeq and PacBio platforms, revealing that the genome of the FORC_017 consists of two circular chromosomes and a plasmid. Chromosome I consists of 3,253,417-bp (GC content 46.49 %) containing 2943 predicted open reading frames (ORFs) and chromosome II of 1,905,745-bp (GC content 46.90 %) containing 1638 ORFs. The plasmid pFORC17 consists of 70,069-bp (GC content 43.77 %) containing 84 ORFs. The average nucleotide identity (ANI) value of the FORC_017 and CMCP6 strains was 98.53, suggesting that they are closely related.Pathogenesis-associated genes including vvhA, rtx gene cluster, and various hemolysin genes were present in FORC_017. In addition, three complete secretion systems (Type I, II and VI) as well as iron uptake-related genes for virulence of the FORC_017 were detected, suggesting that this strain is pathogenic. Further comparative genome analysis revealed that FORC_017 and CMCP6 share major toxin genes including vvhA and rtx for pathogenesis activities. The genome information of the FORC_017 provides novel insights into pathogenicity and virulence factors of V. vulnificus.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.