Menu
April 21, 2020

Combining orthogonal CRISPR and CRISPRi systems for genome engineering and metabolic pathway modulation in Escherichia coli.

CRISPR utilizing Cas9 from Streptococcus pyogenes (SpCas9) and CRISPR interference (CRISPRi) employing catalytically inactive SpCas9 (SpdCas9) have gained popularity for Escherichia coli engineering. To integrate the SpdCas9-based CRISPRi module using CRISPR while avoiding mutual interference between SpCas9/SpdCas9 and their cognate single-guide RNA (sgRNA), this study aimed at exploring an alternative Cas nuclease orthogonal to SpCas9. We compared several Cas9 variants from different microorganisms such as Staphylococcus aureus (SaCas9) and Streptococcus thermophilius CRISPR1 (St1Cas9) as well as Cas12a derived from Francisella novicida (FnCas12a). At the commonly used E. coli model genes  LacZ, we found that SaCas9 and St1Cas9 induced DNA cleavage more effectively than FnCas12a. Both St1Cas9 and SaCas9 were orthogonal to SpCas9 and the induced DNA cleavage promoted the integration of heterologous DNA of up to 10?kb, at which size St1Cas9 was superior to SaCas9 in recombination frequency/accuracy. We harnessed the St1Cas9 system to integrate SpdCas9 and sgRNA arrays for constitutive knockdown of three genes, knock-in pyc and knockout adhE, without compromising the CRISPRi knockdown efficiency. The combination of orthogonal CRISPR/CRISPRi for metabolic engineering enhanced succinate production while inhibiting byproduct formation and may pave a new avenue to E. coli engineering. © 2019 Wiley Periodicals, Inc.


April 21, 2020

Complete genome sequence and phylogenetic analysis of nosocomial pathogen Acinetobacter nosocomialis strain NCTC 8102.

Acinetobacter has emerged recently as one of the most challenging nosocomial pathogens because of its increased rate of antimicrobial resistance. The genetic complexity and genome diversity, as well as the lack of adequate knowledge on the pathogenic determinants of Acinetobacter strains often hinder with pathogenesis studies for the development of better therapeutics to tackle this nosocomial pathogen.In this study, we comparatively analyzed the whole genome sequence of a virulent Acinetobacternosocomialis strain NCTC 8102.The genomic DNA of A. nosocomialis NCTC 8102 was isolated and sequenced using PacBio RS II platform. The sequenced genome was functionally annotated and gene prediction was carried out using the program, Glimmer 3. The phylogenetic analysis of the genome was performed using Mega 6 program and the comparative genome analysis was carried out by BLAST (Basic Local Alignment Search Tool).The complete genome analysis depicted that the genome consists of a circular chromosome with an average G?+?C content of 38.7%. The genome comprises 3700 protein-coding genes, 96 RNA genes (18 rRNA, 74 tRNA and 4 ncRNA genes), and 91 pseudogenes. In addition, 6 prophage regions comprising 2 intact, 1 incomplete and 3 questionable ones and 18 genomic islands were identified in the genome, suggesting the possible occurrence of horizontal gene transfer in this strain. Comparative genome analysis of A. nosocomialis NCTC 8102 genome with the already sequenced A. nosocomialis strain SSA3 showed an average nucleotide identity of 99.0%. In addition, the number of prophages and genomic islands were higher in the A. nosocomialis NCTC 8102 genome compared to that of the strain SSA3. 14 of the genomic islands were unique to A. nosocomialis NCTC 8102 compared to strain SSA3 and they harbored genes which are involved in virulence, multidrug resistance, biofilm formation and bacterial pathogenesis.We sequenced the whole genome of A. nosocomialis strain NCTC 8102 followed by comparatively genome analysis. The study provides valuable information on the genetic features of A. nosocomialis strain and the data from this study would assist in further studies for the development of control measures for this nosocomial pathogen.


April 21, 2020

Isolation, cloning and characterization of an azoreductase and the effect of salinity on its expression in a halophilic bacterium.

Understanding the molecular mechanisms of azo dye decolorization is important for the development of effective bioremediation for textile-colored wastewater. A halophilic bacterium Halomonas sp. strain GT was isolated, which could degrade the azo dye Acid Brilliant Scarlet GR at 10% NaCl. The complete genome sequence of this strain was obtained using the PacBio RS II platform. Genome annotation revealed that four proteins are related to decolorization of azo dyes, such as azoreductase, laccases, benzene 1,2-dioxygenase, and catechol 1,2-dioxygenase. The putative azoreductase gene of Halomonas sp. strain GT responsible for the decolorization of azo dye in high salt environment was isolated. Phylogenetic tree analysis showed that the azoG (azoreductase gene of Halomonas sp. strain GT) and its homologs constituted a new branch of the NADH depending azoreductases, with all the homologous sequence of the protein from halophilic bacteria. At high NaCl concentrations, azoreductase gene expression and azoreductase activity were restrained in Halomonas sp. strain GT, which resulted in low a decolorization rate. Copyright © 2018. Published by Elsevier B.V.


April 21, 2020

Insights into the evolution and drug susceptibility of Babesia duncani from the sequence of its mitochondrial and apicoplast genomes.

Babesia microti and Babesia duncani are the main causative agents of human babesiosis in the United States. While significant knowledge about B. microti has been gained over the past few years, nothing is known about B. duncani biology, pathogenesis, mode of transmission or sensitivity to currently recommended therapies. Studies in immunocompetent wild type mice and hamsters have shown that unlike B. microti, infection with B. duncani results in severe pathology and ultimately death. The parasite factors involved in B. duncani virulence remain unknown. Here we report the first known completed sequence and annotation of the apicoplast and mitochondrial genomes of B. duncani. We found that the apicoplast genome of this parasite consists of a 34?kb monocistronic circular molecule encoding functions that are important for apicoplast gene transcription as well as translation and maturation of the organelle’s proteins. The mitochondrial genome of B. duncani consists of a 5.9?kb monocistronic linear molecule with two inverted repeats of 48?bp at both ends. Using the conserved cytochrome b (Cytb) and cytochrome c oxidase subunit I (coxI) proteins encoded by the mitochondrial genome, phylogenetic analysis revealed that B. duncani defines a new lineage among apicomplexan parasites distinct from B. microti, Babesia bovis, Theileria spp. and Plasmodium spp. Annotation of the apicoplast and mitochondrial genomes of B. duncani identified targets for development of effective therapies. Our studies set the stage for evaluation of the efficacy of these drugs alone or in combination against B. duncani in culture as well as in animal models.Copyright © 2018 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.


April 21, 2020

Atlas of group A streptococcal vaccine candidates compiled using large-scale comparative genomics.

Group A Streptococcus (GAS; Streptococcus pyogenes) is a bacterial pathogen for which a commercial vaccine for humans is not available. Employing the advantages of high-throughput DNA sequencing technology to vaccine design, we have analyzed 2,083 globally sampled GAS genomes. The global GAS population structure reveals extensive genomic heterogeneity driven by homologous recombination and overlaid with high levels of accessory gene plasticity. We identified the existence of more than 290 clinically associated genomic phylogroups across 22 countries, highlighting challenges in designing vaccines of global utility. To determine vaccine candidate coverage, we investigated all of the previously described GAS candidate antigens for gene carriage and gene sequence heterogeneity. Only 15 of 28 vaccine antigen candidates were found to have both low naturally occurring sequence variation and high (>99%) coverage across this diverse GAS population. This technological platform for vaccine coverage determination is equally applicable to prospective GAS vaccine antigens identified in future studies.


April 21, 2020

Antibiotic resistance and heavy metal tolerance plasmids: the antimicrobial bulletproof properties of Escherichia fergusonii isolated from poultry.

We describe the mobilome of Escherichia fergusonii 40A isolated from poultry, consisting of four different plasmids, p46_40A (IncX1, 45,869 bp), p80_40A (non-typable, 79,635 bp), p150_40A (IncI1-ST1, 148,340 bp) and p280_40A (IncHI2A-ST2, 279,537 bp). The mobilome-40A carries a blend of several different resistance and virulence genes, heavy metal tolerance operons and conjugation system. This mobilome 40A is a perfect tool to preserve and disseminate antimicrobial resistance and makes the bacterial isolate incredibly adapted to survive under constant antimicrobial pressure.


April 21, 2020

The vaginal microbiome and preterm birth.

The incidence of preterm birth exceeds 10% worldwide. There are significant disparities in the frequency of preterm birth among populations within countries, and women of African ancestry disproportionately bear the burden of risk in the United States. In the present study, we report a community resource that includes ‘omics’ data from approximately 12,000 samples as part of the integrative Human Microbiome Project. Longitudinal analyses of 16S ribosomal RNA, metagenomic, metatranscriptomic and cytokine profiles from 45 preterm and 90 term birth controls identified harbingers of preterm birth in this cohort of women predominantly of African ancestry. Women who delivered preterm exhibited significantly lower vaginal levels of Lactobacillus crispatus and higher levels of BVAB1, Sneathia amnii, TM7-H1, a group of Prevotella species and nine additional taxa. The first representative genomes of BVAB1 and TM7-H1 are described. Preterm-birth-associated taxa were correlated with proinflammatory cytokines in vaginal fluid. These findings highlight new opportunities for assessment of the risk of preterm birth.


April 21, 2020

Detection of Fusarium oxysporum f. sp. fragariae from Infected Strawberry Plants.

Isolates of the Fusarium oxysporum species complex have been characterized as plant pathogens that commonly cause vascular wilt, stunting, and yellowing of the leaves in a variety of hosts. F. oxysporum species complex isolates have been grouped into formae speciales based on their ability to cause disease on a specific host. F. oxysporum f. sp. fragariae is the causal agent of Fusarium wilt of strawberry and has become a threat to production as fumigation practices have changed in California. F. oxysporum f. sp. fragariae is polyphyletic and limited genetic markers are available for its detection. In this study, next-generation sequencing and comparative genomics were used to identify a unique genetic locus that can detect all of the somatic compatibility groups of F. oxysporum f. sp. fragariae identified in California. This locus was used to develop a TaqMan quantitative polymerase chain reaction assay and an isothermal recombinase polymerase amplification (RPA) assay that have very high sensitivity and specificity for more than 180 different isolates of the pathogen tested. RPA assay results from multiple field samples were validated with pathogenicity tests of recovered isolates.


April 21, 2020

The history, genome and biology of NCTC 30: a non-pandemic Vibrio cholerae isolate from World War One.

The sixth global cholera pandemic lasted from 1899 to 1923. However, despite widespread fear of the disease and of its negative effects on troop morale, very few soldiers in the British Expeditionary Forces contracted cholera between 1914 and 1918. Here, we have revived and sequenced the genome of NCTC 30, a 102-year-old Vibrio cholerae isolate, which we believe is the oldest publicly available live V. cholerae strain in existence. NCTC 30 was isolated in 1916 from a British soldier convalescent in Egypt. We found that this strain does not encode cholera toxin, thought to be necessary to cause cholera, and is not part of V. cholerae lineages responsible for the pandemic disease. We also show that NCTC 30, which predates the introduction of penicillin-based antibiotics, harbours a functional ß-lactamase antibiotic resistance gene. Our data corroborate and provide molecular explanations for previous phenotypic studies of NCTC 30 and provide a new high-quality genome sequence for historical, non-pandemic V. cholerae.


April 21, 2020

Competition between mobile genetic elements drives optimization of a phage-encoded CRISPR-Cas system: insights from a natural arms race.

CRISPR-Cas systems function as adaptive immune systems by acquiring nucleotide sequences called spacers that mediate sequence-specific defence against competitors. Uniquely, the phage ICP1 encodes a Type I-F CRISPR-Cas system that is deployed to target and overcome PLE, a mobile genetic element with anti-phage activity in Vibrio cholerae. Here, we exploit the arms race between ICP1 and PLE to examine spacer acquisition and interference under laboratory conditions to reconcile findings from wild populations. Natural ICP1 isolates encode multiple spacers directed against PLE, but we find that single spacers do not interfere equally with PLE mobilization. High-throughput sequencing to assay spacer acquisition reveals that ICP1 can also acquire spacers that target the V. cholerae chromosome. We find that targeting the V. cholerae chromosome proximal to PLE is sufficient to block PLE and is dependent on Cas2-3 helicase activity. We propose a model in which indirect chromosomal spacers are able to circumvent PLE by Cas2-3-mediated processive degradation of the V. cholerae chromosome before PLE mobilization. Generally, laboratory-acquired spacers are much more diverse than the subset of spacers maintained by ICP1 in nature, showing how evolutionary pressures can constrain CRISPR-Cas targeting in ways that are often not appreciated through in vitro analyses. This article is part of a discussion meeting issue ‘The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems’.


April 21, 2020

Dysbiosis and Variation in Predicted Functions of the Granulation Tissue Microbiome in HPV Positive and Negative Severe Chronic Periodontitis.

Retrospective analysis has already shown correlation between severe Chronic Periodontitis (CP) cases with human papiloma virus (HPV). Hence, we aimed to explore deep-seated infected granulation tissue removed during periodontal flap surgery procedures for residential bacterial species between HPV+ and HVP- CP cases, which may serve as good predisposition marker for oral cancer. All CP-granulation samples showed the prominence of Firmicutes, Proteobacteria, and Bacteroidetes phyla with an abundance of gram negative anaerobes, except Streptococcus. In Beta diversity nonmetric multidimensional scaling plot, the random distribution of species was observed between HPV+ and HPV- CP granulation-samples. However, an abundance of Capnocytophaga ochracea was observed in HPV+ CP samples (p<0.05), while Porphyromonas endodontalis, Macellibacteroides fermentas, Treponema phagedenis, and Campylobacter rectus species were highly abundant in HPV- CP samples (p<0.05). The differential species richness leads altered functions related to mismatch-repair and nucleotide excision-repair and cytoskeleton-proteins. Hence, differential abundance of gram negative bacterial species between HPV+ and HPV- granulation-samples under anaerobic conditions may release virulence factors which may alter pathways favouring carcinogenesis. Hence, these species may serve as good predisposition marker for oral-cancer.


April 21, 2020

Comparative Genome Characterization of a Petroleum-Degrading Bacillus subtilis Strain DM2.

The complete genome sequence of Bacillus subtilis strain DM2 isolated from petroleum-contaminated soil on the Tibetan Plateau was determined. The genome of strain DM2 consists of a circular chromosome of 4,238,631 bp for 4458 protein-coding genes and a plasmid of 84,240 bp coding for 103 genes. Thirty-four genomic islands coding for 330 proteins and 5 prophages are found in the genome. The DDH value shows that strain DM2 belongs to B. subtilis subsp. subtilis subspecies, but significant variations of the genome are also present. Comparative analysis showed that the genome of strain DM2 encodes some strain-specific proteins in comparison with B. subtilis subsp. subtilis str. 168, such as carboxymuconolactone decarboxylase family protein, gfo/Idh/MocA family oxidoreductases, GlsB/YeaQ/YmgE family stress response membrane protein, HlyC/CorC family transporters, LLM class flavin-dependent oxidoreductase, and LPXTG cell wall anchor domain-containing protein. Most of the common strain-specific proteins in DM2 and MJ01 strains, or proteins unique to DM2 strain, are involved in the pathways related to stress response, signaling, and hydrocarbon degradation. Furthermore, the strain DM2 genome contains 122 genes coding for developed two-component systems and 138 genes coding for ABC transporter systems. The prominent features of the strain DM2 genome reflect the evolutionary fitness of this strain to harsh conditions and hydrocarbon utilization.


April 21, 2020

Complete Genome Sequence of Photobacterium damselae Subsp. damselae Strain SSPD1601 Isolated from Deep-Sea Cage-Cultured Sebastes schlegelii with Septic Skin Ulcer.

Photobacterium damselae subsp. damselae (PDD) is a Gram-negative bacterium that can infect a variety of aquatic organisms and humans. Based on an epidemiological investigation conducted over the past 3 years, PDD is one of the most important pathogens causing septic skin ulcer in deep-sea cage-cultured Sebastes schlegelii in the Huang-Bohai Sea area and present throughout the year with high abundance. To further understand the pathogenicity of this species, the pathogenic properties and genome of PDD strain SSPD1601 were analyzed. The results revealed that PDD strain SSPD1601 is a rod-shaped cell with a single polar flagellum, and the clinical symptoms were replicated during artificial infection. The SSPD1601 genome consists of two chromosomes and two plasmids, totaling 4,252,294?bp with 3,751 coding sequences (CDSs), 196 tRNA genes, and 47 rRNA genes. Common virulence factors including flagellin, Fur, RstB, hcpA, OMPs, htpB-Hsp60, VasK, and vgrG were found in strain SSPD1601. Furthermore, SSPD1601 is a pPHDD1-negative strain containing the hemolysin gene hlyAch and three putative hemolysins (emrA, yoaF, and VPA0226), which are likely responsible for the pathogenicity of SSPD1601. The phylogenetic analysis revealed SSPD1601 to be most closely related to Phdp Wu-1. In addition, the antibiotic resistance phenotype indicated that SSPD1601 was not sensitive to ceftazidime, pipemidic, streptomycin, cefalexin, bacitracin, cefoperazone sodium, acetylspiramycin, clarithromycin, amikacin, gentamycin, kanamycin, oxacillin, ampicillin, and trimethoprim-sulfamethoxazole, but only the bacitracin resistance gene bacA was detected based on Antibiotic Resistance Genes Database. These results expand our understanding of PDD, setting the stage for further studies of its pathogenesis and disease prevention.


April 21, 2020

Analysis of the Complete Genome Sequence of a Novel, Pseudorabies Virus Strain Isolated in Southeast Europe.

Pseudorabies virus (PRV) is the causative agent of Aujeszky’s disease giving rise to significant economic losses worldwide. Many countries have implemented national programs for the eradication of this virus. In this study, long-read sequencing was used to determine the nucleotide sequence of the genome of a novel PRV strain (PRV-MdBio) isolated in Serbia.In this study, a novel PRV strain was isolated and characterized. PRV-MdBio was found to exhibit similar growth properties to those of another wild-type PRV, the strain Kaplan. Single-molecule real-time (SMRT) sequencing has revealed that the new strain differs significantly in base composition even from strain Kaplan, to which it otherwise exhibits the highest similarity. We compared the genetic composition of PRV-MdBio to strain Kaplan and the China reference strain Ea and obtained that radical base replacements were the most common point mutations preceding conservative and silent mutations. We also found that the adaptation of PRV to cell culture does not lead to any tendentious genetic alteration in the viral genome.PRV-MdBio is a wild-type virus, which differs in base composition from other PRV strains to a relatively large extent.


April 21, 2020

Identification of plasmid encoded osmoregulatory genes from halophilic bacteria isolated from the rhizosphere of halophytes.

Bacterial plasmids carry genes that code for additional traits such as osmoregulation, CO2 fixation, antibiotic and heavy metal resistance, root nodulation and nitrogen fixation. The main objective of the current study was to identify plasmid-conferring osmoregulatory genes in bacteria isolated from rhizospheric and non-rhizospheric soils of halophytes (Salsola stocksii and Atriplex amnicola). More than 55% of halophilic bacteria from the rhizosphere and 70% from non-rhizospheric soils were able to grow at 3?M salt concentrations. All the strains showed optimum growth at 1.5-3.0?M NaCl. Bacterial strains from the Salsola rhizosphere showed maximum (31%) plasmid elimination during curing experiments as compared to bacterial strains from the Atriplex rhizosphere and non-rhizospheric soils. Two plasmid cured strains Bacillus HL2HP6 and Oceanobacillus HL2RP7 lost their ability to grow in halophilic medium, but they grew well on LB medium. The plasmid cured strains also showed a change in sensitivity to specific antibiotics. These plasmids were isolated and transformed into E. coli strains and growth response of wild-type and transformed E. coli strains was compared at 1.5-4?M NaCl concentrations. Chromosomal DNA and plasmids from Bacillus filamentosus HL2HP6 were sequenced by using high throughput sequencing approach. Results of functional analysis of plasmid sequences showed different proteins and enzymes involved in osmoregulation of bacteria, such as trehalose, ectoine synthetase, porins, proline, alanine, inorganic ion transporters, dehydrogenases and peptidases. Our results suggested that plasmid conferring osmoregulatory genes play a vital role to maintain internal osmotic balance of bacterial cells and these genes can be used to develop salt tolerant transgenic crops.Copyright © 2019 Elsevier GmbH. All rights reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.