Menu
July 7, 2019

Genome analysis of Endomicrobium proavitum suggests loss and gain of relevant functions during the evolution of intracellular symbionts.

Bacterial endosymbionts of eukaryotes show progressive genome erosion, but detailed investigations of the evolutionary processes involved in the transition to an intracellular lifestyle are generally hampered by the lack of extant free-living lineages. Here, we characterize the genome of the recently isolated, free-living Endomicrobium proavitum, the second member of the Elusimicrobia phylum brought into pure culture, and compare it to the closely related “Candidatus Endomicrobium trichonymphae” strain Rs-D17, a previously described but uncultured endosymbiont of termite gut flagellates. A reconstruction of the metabolic pathways of Endomicrobium proavitum matched the fermentation products formed in pure culture and underscored its restriction to glucose as the substrate. However, several pathways present in the free-living strain, e.g., for the uptake and activation of glucose and its subsequent fermentation, ammonium assimilation, and outer membrane biogenesis, were absent or disrupted in the endosymbiont, probably lost during the massive genome rearrangements that occurred during symbiogenesis. While the majority of the genes in strain Rs-D17 have orthologs in Endomicrobium proavitum, the endosymbiont also possesses a number of functions that are absent from the free-living strain and may represent adaptations to the intracellular lifestyle. Phylogenetic analysis revealed that the genes encoding glucose 6-phosphate and amino acid transporters, acetaldehyde/alcohol dehydrogenase, and the pathways of glucuronic acid catabolism and thiamine pyrophosphate biosynthesis were either acquired by horizontal gene transfer or may represent ancestral traits that were lost in the free-living strain. The polyphyletic origin of Endomicrobia in different flagellate hosts makes them excellent models for future studies of convergent and parallel evolution during symbiogenesis.IMPORTANCE The isolation of a free-living relative of intracellular symbionts provides the rare opportunity to identify the evolutionary processes that occur in the course of symbiogenesis. Our study documents that the genome of “Candidatus Endomicrobium trichonymphae,” which represents a clade of endosymbionts that have coevolved with termite gut flagellates for more than 40 million years, is not simply a subset of the genes present in Endomicrobium proavitum, a member of the ancestral, free-living lineage. Rather, comparative genomics revealed that the endosymbionts possess several relevant functions that were either prerequisites for colonization of the intracellular habitat or might have served to compensate for genes losses that occurred during genome erosion. Some gene sets found only in the endosymbiont were apparently acquired by horizontal transfer from other gut bacteria, which suggests that the intracellular bacteria of flagellates are not entirely cut off from gene flow. Copyright © 2017 American Society for Microbiology.


July 7, 2019

A novel disrupted mcr-1 gene and a lysogenized phage P1-like sequence detected from a large conjugative plasmid, cultured from a human atypical enteropathogenic Escherichia coli (aEPEC) recovered in China.

Sir,The recent description of the plasmid-mediated colistin resistance gene, mcr-1, in bacterial isolates cultured in China has triggered several retrospective studies investigating this gene.1The mcr-1 gene has so far been reported to be associated with various plas- mid replicon types, and was found only rarely to be chromoso- mally encoded.2,3However, no report of a directly inactivated mcr-1 gene has been described to date. In this study, we present the complete nucleotide sequence of an ESBL-producing atypical enteropathogenic Escherichia coli (aEPEC) isolate, SLK172, one of whose plasmids carried a uniquely disrupted mcr-1 gene, being inactivated following the insertion of an ISApl1 element (Figure1a).


July 7, 2019

Genomics-enabled analysis of the emergent disease cotton bacterial blight.

Cotton bacterial blight (CBB), an important disease of (Gossypium hirsutum) in the early 20th century, had been controlled by resistant germplasm for over half a century. Recently, CBB re-emerged as an agronomic problem in the United States. Here, we report analysis of cotton variety planting statistics that indicate a steady increase in the percentage of susceptible cotton varieties grown each year since 2009. Phylogenetic analysis revealed that strains from the current outbreak cluster with race 18 Xanthomonas citri pv. malvacearum (Xcm) strains. Illumina based draft genomes were generated for thirteen Xcm isolates and analyzed along with 4 previously published Xcm genomes. These genomes encode 24 conserved and nine variable type three effectors. Strains in the race 18 clade contain 3 to 5 more effectors than other Xcm strains. SMRT sequencing of two geographically and temporally diverse strains of Xcm yielded circular chromosomes and accompanying plasmids. These genomes encode eight and thirteen distinct transcription activator-like effector genes. RNA-sequencing revealed 52 genes induced within two cotton cultivars by both tested Xcm strains. This gene list includes a homeologous pair of genes, with homology to the known susceptibility gene, MLO. In contrast, the two strains of Xcm induce different clade III SWEET sugar transporters. Subsequent genome wide analysis revealed patterns in the overall expression of homeologous gene pairs in cotton after inoculation by Xcm. These data reveal important insights into the Xcm-G. hirsutum disease complex and strategies for future development of resistant cultivars.


July 7, 2019

Antibody-independent mechanisms regulate the establishment of chronic Plasmodium infection.

Malaria is caused by parasites of the genus Plasmodium. All human-infecting Plasmodium species can establish long-lasting chronic infections(1-5), creating an infectious reservoir to sustain transmission(1,6). It is widely accepted that the maintenance of chronic infection involves evasion of adaptive immunity by antigenic variation(7). However, genes involved in this process have been identified in only two of five human-infecting species: Plasmodium falciparum and Plasmodium knowlesi. Furthermore, little is understood about the early events in the establishment of chronic infection in these species. Using a rodent model we demonstrate that from the infecting population, only a minority of parasites, expressing one of several clusters of virulence-associated pir genes, establishes a chronic infection. This process occurs in different species of parasites and in different hosts. Establishment of chronicity is independent of adaptive immunity and therefore different from the mechanism proposed for maintenance of chronic P. falciparum infections(7-9). Furthermore, we show that the proportions of parasites expressing different types of pir genes regulate the time taken to establish a chronic infection. Because pir genes are common to most, if not all, species of Plasmodium(10), this process may be a common way of regulating the establishment of chronic infections.


July 7, 2019

Human to yeast pathway transplantation: cross-species dissection of the adenine de novo pathway regulatory node

Pathway transplantation from one organism to another represents a means to a more complete understanding of a biochemical or regulatory process. The purine biosynthesis pathway, a core metabolic function, was transplanted from human to yeast. We replaced the entire Saccharomyces cerevisiae adenine de novo pathway with the cognate human pathway components. A yeast strain was humanized for the full pathway by deleting all relevant yeast genes completely and then providing the human pathway in trans using a neochromosome expressing the human protein coding regions under the transcriptional control of their cognate yeast promoters and terminators. The humanized yeast strain grows in the absence of adenine, indicating complementation of the yeast pathway by the full set of human proteins. While the strain with the neochromosome is indeed prototrophic, it grows slowly in the absence of adenine. Dissection of the phenotype revealed that the human ortholog of ADE4, PPAT, shows only partial complementation. We have used several strategies to understand this phenotype, that point to PPAT/ADE4 as the central regulatory node. Pathway metabolites are responsible for regulating PPATs protein abundance through transcription and proteolysis as well as its enzymatic activity by allosteric regulation in these yeast cells. Extensive phylogenetic analysis of PPATs from diverse organisms hints at adaptations of the enzyme-level regulation to the metabolite levels in the organism. Finally, we isolated specific mutations in PPAT as well as in other genes involved in the purine metabolic network that alleviate incomplete complementation by PPAT and provide further insight into the complex regulation of this critical metabolic pathway.


July 7, 2019

Rifamorpholines A-E, potential antibiotics from locust-associated actinobacteria Amycolatopsis sp. Hca4.

Cultivation of locust associated rare actinobacteria, Amycolatopsis sp. HCa4, has provided five unusual macrolactams rifamorpholines A-E. Their structures were determined by interpretation of spectroscopic and crystallographic data. Rifamorpholines A-E possess an unprecedented 5/6/6/6 ring chromophore, representing a new subclass of rifamycin antibiotics. The biosynthetic pathway for compounds 1-5 involves a key 1,6-cyclization for the formation of the morpholine ring. Compounds 2 and 4 showed potent activities against methicillin-resistant Staphylococcus aureus (MRSA) with MICs of 4.0 and 8.0 µM, respectively.


July 7, 2019

Conjugative ESBL plasmids differ in their potential to rescue susceptible bacteria via horizontal gene transfer in lethal antibiotic concentrations.

Emergence (and proliferation) of resistant pathogens under strong antibiotic selection is an evolutionary process where bacteria overcome the otherwise growth inhibiting or lethal concentration of antimicrobial substances. In this study, we set to investigate a largely unexplored mechanism, namely evolutionary rescue (that is, adaptive evolutionary change that restores positive growth to declining population and prevents extinction) via horizontal gene transfer, by which new resistant bacteria may emerge both in and out of clinical environments.


July 7, 2019

Adaptation of genetically monomorphic bacteria: evolution of copper resistance through multiple horizontal gene transfers of complex and versatile mobile genetic elements.

Copper-based antimicrobial compounds are widely used to control plant bacterial pathogens. Pathogens have adapted in response to this selective pressure. Xanthomonas citri pv. citri, a major citrus pathogen causing Asiatic citrus canker, was first reported to carry plasmid-encoded copper resistance in Argentina. This phenotype was conferred by the copLAB gene system. The emergence of resistant strains has since been reported in Réunion and Martinique. Using microsatellite-based genotyping and copLAB PCR, we demonstrated that the genetic structure of the copper-resistant strains from these three regions was made up of two distant clusters and varied for the detection of copLAB amplicons. In order to investigate this pattern more closely, we sequenced six copper-resistant X. citri pv. citri strains from Argentina, Martinique and Réunion, together with reference copper-resistant Xanthomonas and Stenotrophomonas strains using long-read sequencing technology. Genes involved in copper resistance were found to be strain dependent with the novel identification in X. citri pv. citri of copABCD and a cus heavy metal efflux resistance-nodulation-division system. The genes providing the adaptive trait were part of a mobile genetic element similar to Tn3-like transposons and included in a conjugative plasmid. This indicates the system’s great versatility. The mining of all available bacterial genomes suggested that, within the bacterial community, the spread of copper resistance associated with mobile elements and their plasmid environments was primarily restricted to the Xanthomonadaceae family.© 2017 John Wiley & Sons Ltd.


July 7, 2019

Genomic exploration of individual giant ocean viruses.

Viruses are major pathogens in all biological systems. Virus propagation and downstream analysis remains a challenge, particularly in the ocean where the majority of their microbial hosts remain recalcitrant to current culturing techniques. We used a cultivation-independent approach to isolate and sequence individual viruses. The protocol uses high-speed fluorescence-activated virus sorting flow cytometry, multiple displacement amplification (MDA), and downstream genomic sequencing. We focused on ‘giant viruses’ that are readily distinguishable by flow cytometry. From a single-milliliter sample of seawater collected from off the dock at Boothbay Harbor, ME, USA, we sorted almost 700 single virus particles, and subsequently focused on a detailed genome analysis of 12. A wide diversity of viruses was identified that included Iridoviridae, extended Mimiviridae and even a taxonomically novel (unresolved) giant virus. We discovered a viral metacaspase homolog in one of our sorted virus particles and discussed its implications in rewiring host metabolism to enhance infection. In addition, we demonstrated that viral metacaspases are widespread in the ocean. We also discovered a virus that contains both a reverse transcriptase and a transposase; although highly speculative, we suggest such a genetic complement would potentially allow this virus to exploit a latency propagation mechanism. Application of single virus genomics provides a powerful opportunity to circumvent cultivation of viruses, moving directly to genomic investigation of naturally occurring viruses, with the assurance that the sequence data is virus-specific, non-chimeric and contains no cellular contamination.


July 7, 2019

Niche partitioning of diverse sulfur-oxidizing bacteria at hydrothermal vents.

At deep-sea hydrothermal vents, primary production is carried out by chemolithoautotrophic microorganisms, with the oxidation of reduced sulfur compounds being a major driver for microbial carbon fixation. Dense and highly diverse assemblies of sulfur-oxidizing bacteria (SOB) are observed, yet the principles of niche differentiation between the different SOB across geochemical gradients remain poorly understood. In this study niche differentiation of the key SOB was addressed by extensive sampling of active sulfidic vents at six different hydrothermal venting sites in the Manus Basin, off Papua New Guinea. We subjected 33 diffuse fluid and water column samples and 23 samples from surfaces of chimneys, rocks and fauna to a combined analysis of 16S rRNA gene sequences, metagenomes and real-time in situ measured geochemical parameters. We found Sulfurovum Epsilonproteobacteria mainly attached to surfaces exposed to diffuse venting, while the SUP05-clade dominated the bacterioplankton in highly diluted mixtures of vent fluids and seawater. We propose that the high diversity within Sulfurimonas- and Sulfurovum-related Epsilonproteobacteria observed in this study derives from the high variation of environmental parameters such as oxygen and sulfide concentrations across small spatial and temporal scales.


July 7, 2019

IgA-coated E. coli enriched in Crohn’s disease spondyloarthritis promote TH17-dependent inflammation.

Peripheral spondyloarthritis (SpA) is a common extraintestinal manifestation in patients with active inflammatory bowel disease (IBD) characterized by inflammatory enthesitis, dactylitis, or synovitis of nonaxial joints. However, a mechanistic understanding of the link between intestinal inflammation and SpA has yet to emerge. We evaluated and functionally characterized the fecal microbiome of IBD patients with or without peripheral SpA. Coupling the sorting of immunoglobulin A (IgA)-coated microbiota with 16S ribosomal RNA-based analysis (IgA-seq) revealed a selective enrichment in IgA-coated Escherichia coli in patients with Crohn’s disease-associated SpA (CD-SpA) compared to CD alone. E. coli isolates from CD-SpA-derived IgA-coated bacteria were similar in genotype and phenotype to an adherent-invasive E. coli (AIEC) pathotype. In comparison to non-AIEC E. coli, colonization of germ-free mice with CD-SpA E. coli isolates induced T helper 17 cell (TH17) mucosal immunity, which required the virulence-associated metabolic enzyme propanediol dehydratase (pduC). Modeling the increase in mucosal and systemic TH17 immunity we observed in CD-SpA patients, colonization of interleukin-10-deficient or K/BxN mice with CD-SpA-derived E. coli lead to more severe colitis or inflammatory arthritis, respectively. Collectively, these data reveal the power of IgA-seq to identify immunoreactive resident pathosymbionts that link mucosal and systemic TH17-dependent inflammation and offer microbial and immunophenotype stratification of CD-SpA that may guide medical and biologic therapy. Copyright © 2017, American Association for the Advancement of Science.


July 7, 2019

A supervised statistical learning approach for accurate Legionella pneumophila source attribution during outbreaks.

Public health agencies are increasingly relying on genomics during Legionnaires’ disease investigations. However, the causative bacterium (Legionella pneumophila) has an unusual population structure, with extreme temporal and spatial genome sequence conservation. Furthermore, Legionnaires’ disease outbreaks can be caused by multiple L. pneumophila genotypes in a single source. These factors can confound cluster identification using standard phylogenomic methods. Here, we show that a statistical learning approach based on L. pneumophila core genome single nucleotide polymorphism (SNP) comparisons eliminates ambiguity for defining outbreak clusters and accurately predicts exposure sources for clinical cases. We illustrate the performance of our method by genome comparisons of 234 L. pneumophila isolates obtained from patients and cooling towers in Melbourne, Australia, between 1994 and 2014. This collection included one of the largest reported Legionnaires’ disease outbreaks, which involved 125 cases at an aquarium. Using only sequence data from L. pneumophila cooling tower isolates and including all core genome variation, we built a multivariate model using discriminant analysis of principal components (DAPC) to find cooling tower-specific genomic signatures and then used it to predict the origin of clinical isolates. Model assignments were 93% congruent with epidemiological data, including the aquarium Legionnaires’ disease outbreak and three other unrelated outbreak investigations. We applied the same approach to a recently described investigation of Legionnaires’ disease within a UK hospital and observed a model predictive ability of 86%. We have developed a promising means to breach L. pneumophila genetic diversity extremes and provide objective source attribution data for outbreak investigations.IMPORTANCE Microbial outbreak investigations are moving to a paradigm where whole-genome sequencing and phylogenetic trees are used to support epidemiological investigations. It is critical that outbreak source predictions are accurate, particularly for pathogens, like Legionella pneumophila, which can spread widely and rapidly via cooling system aerosols, causing Legionnaires’ disease. Here, by studying hundreds of Legionella pneumophila genomes collected over 21 years around a major Australian city, we uncovered limitations with the phylogenetic approach that could lead to a misidentification of outbreak sources. We implement instead a statistical learning technique that eliminates the ambiguity of inferring disease transmission from phylogenies. Our approach takes geolocation information and core genome variation from environmental L. pneumophila isolates to build statistical models that predict with high confidence the environmental source of clinical L. pneumophila during disease outbreaks. We show the versatility of the technique by applying it to unrelated Legionnaires’ disease outbreaks in Australia and the UK. Copyright © 2017 American Society for Microbiology.


July 7, 2019

Euglena gracilis genome and transcriptome: organelles, nuclear genome assembly strategies and initial features.

Euglena gracilis is a major component of the aquatic ecosystem and together with closely related species, is ubiquitous worldwide. Euglenoids are an important group of protists, possessing a secondarily acquired plastid and are relatives to the Kinetoplastidae, which themselves have global impact as disease agents. To understand the biology of E. gracilis, as well as to provide further insight into the evolution and origins of the Kinetoplastidae, we embarked on sequencing the nuclear genome; the plastid and mitochondrial genomes are already in the public domain. Earlier studies suggested an extensive nuclear DNA content, with likely a high degree of repetitive sequence, together with significant extrachromosomal elements. To produce a list of coding sequences we have combined transcriptome data from both published and new sources, as well as embarked on de novo sequencing using a combination of 454, Illumina paired end libraries and long PacBio reads. Preliminary analysis suggests a surprisingly large genome approaching 2 Gbp, with a highly fragmented architecture and extensive repeat composition. Over 80% of the RNAseq reads from E. gracilis maps to the assembled genome sequence, which is comparable with the well assembled genomes of T. brucei and T. cruzi. In order to achieve this level of assembly we employed multiple informatics pipelines, which are discussed here. Finally, as a preliminary view of the genome architecture, we discuss the tubulin and calmodulin genes, which highlight potential novel splicing mechanisms.


July 7, 2019

Complete genome sequence of Ruminococcaceae bacterium CPB6: A newly isolated culture for efficient n-caproic acid production from lactate.

n-caproic acid (CA) is a valuable chemical feedstock for various industrial applications. Biological production of CA from renewable carbon sources has attracted a lot of attentions recently. We lately reported the new culture Ruminococcaceae bacterium CPB6, which was isolated from a microbiome for efficient CA production from lactate. To further elucidate its metabolism, we sequenced the whole genome of the strain. The size of the complete genome is 2,069,994bp with 50.58% GC content; no plasmid was identified. Sets of genes involved in the fatty acid biosynthesis via acyl carrier protein (ACP) and coenzyme A (CoA) as well as lactate oxidation/reduction pathways were identified in the genome. These genes were inferred to be correlated with the CA production. The complete genome sequence provides essential information for the elucidation of the metabolism for CA production from lactate, and further improvement of the strain through genetic engineering for enhanced CA production and other biotechnological purposes. Copyright © 2017 Elsevier B.V. All rights reserved.


July 7, 2019

A small secreted protein in Zymoseptoria tritici is responsible for avirulence on wheat cultivars carrying the Stb6 resistance gene.

Zymoseptoria tritici is the causal agent of Septoria tritici blotch, a major pathogen of wheat globally and the most damaging pathogen of wheat in Europe. A gene-for-gene (GFG) interaction between Z. tritici and wheat cultivars carrying the Stb6 resistance gene has been postulated for many years, but the genes have not been identified. We identified AvrStb6 by combining quantitative trait locus mapping in a cross between two Swiss strains with a genome-wide association study using a natural population of c. 100 strains from France. We functionally validated AvrStb6 using ectopic transformations. AvrStb6 encodes a small, cysteine-rich, secreted protein that produces an avirulence phenotype on wheat cultivars carrying the Stb6 resistance gene. We found 16 nonsynonymous single nucleotide polymorphisms among the tested strains, indicating that AvrStb6 is evolving very rapidly. AvrStb6 is located in a highly polymorphic subtelomeric region and is surrounded by transposable elements, which may facilitate its rapid evolution to overcome Stb6 resistance. AvrStb6 is the first avirulence gene to be functionally validated in Z. tritici, contributing to our understanding of avirulence in apoplastic pathogens and the mechanisms underlying GFG interactions between Z. tritici and wheat. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.