Menu
July 7, 2019

The complete genome sequence of the nicotine-degrading bacterium Shinella sp. HZN7.

Nicotine is a natural alkaloid that is very toxic to humans. To eliminate the harmful effects of nicotine in the environment, biological methods employing microbes to degrade nicotine are required (Brandsch, 2006; Liu et al., 2015). Shinella sp. HZN7 can degrade nicotine efficiently via the variant of a pyridine and pyrrolidine pathways (VPP; Ma et al., 2013; Qiu et al., 2014, 2015). The main intermediates in this pathway include 6-hydroxy-nicotine, 6-hydroxy-N-methylmyosmine, 6-hydroxypseudooxynicotine, 6-hydroxy-3-succinoyl-pyridine, and 2,5-dihydroxypyridine. This strain is the first nicotine-degrading bacterium to be isolated from the genus Shinella.


July 7, 2019

Key experimental evidence of chromosomal DNA transfer among selected tuberculosis-causing mycobacteria.

Horizontal gene transfer (HGT) is a major driving force of bacterial diversification and evolution. For tuberculosis-causing mycobacteria, the impact of HGT in the emergence and distribution of dominant lineages remains a matter of debate. Here, by using fluorescence-assisted mating assays and whole genome sequencing, we present unique experimental evidence of chromosomal DNA transfer between tubercle bacilli of the early-branching Mycobacterium canettii clade. We found that the obtained recombinants had received multiple donor-derived DNA fragments in the size range of 100 bp to 118 kbp, fragments large enough to contain whole operons. Although the transfer frequency between M. canettii strains was low and no transfer could be observed among classical Mycobacterium tuberculosis complex (MTBC) strains, our study provides the proof of concept for genetic exchange in tubercle bacilli. This outstanding, now experimentally validated phenomenon presumably played a key role in the early evolution of the MTBC toward pathogenicity. Moreover, our findings also provide important information for the risk evaluation of potential transfer of drug resistance and fitness mutations among clinically relevant mycobacterial strains.


July 7, 2019

Whole genome sequence analysis indicates recent diversification of mammal-associated Campylobacter fetus and implicates a genetic factor associated with H2S production.

Campylobacter fetus (C. fetus) can cause disease in both humans and animals. C. fetus has been divided into three subspecies: C. fetus subsp. fetus (Cff), C. fetus subsp. venerealis (Cfv) and C. fetus subsp. testudinum (Cft). Subspecies identification of mammal-associated C. fetus strains is crucial in the control of Bovine Genital Campylobacteriosis (BGC), a syndrome associated with Cfv. The prescribed methods for subspecies identification of the Cff and Cfv isolates are: tolerance to 1 % glycine and H2S production.In this study, we observed the deletion of a putative cysteine transporter in the Cfv strains, which are not able to produce H2S from L-cysteine. Phylogenetic reconstruction of the core genome single nucleotide polymorphisms (SNPs) within Cff and Cfv strains divided these strains into five different clades and showed that the Cfv clade and a Cff clade evolved from a single Cff ancestor.Multiple C. fetus clades were observed, which were not consistent with the biochemical differentiation of the strains. This suggests the need for a closer evaluation of the current C. fetus subspecies differentiation, considering that the phenotypic differentiation is still applied in BGC control programs.


July 7, 2019

Genome and plasmid analysis of blaIMP-4 -carrying Citrobacter freundii B38.

Sequencing of the blaIMP-4 -carrying C. freundii B38 using PacBio SMRT technique revealed that the genome contained a chromosome of 5,134,500 bp, and three plasmids, pOZ172 (127,005 bp), pOZ181 (277,592 bp), and pOZ182 (18,467 bp). Plasmid pOZ172 was identified as IncFIIY, like pP10164-NDM and pNDM-EcGN174. It carries a class 1 integron with four cassettes: blaIMP-4-qacG2-aacA4-aphA15, and a complete hybrid tni module (tniR-tniQ-tniB-tniA). The recombination of tniR from Tn402 (identical) with tniQBA (99%) from Tn5053 occurred within the res site of Tn402/5053. The Tn402/5053-like integron, named Tn6017, was inserted into Tn1722 at the res II site. The replication, partitioning and transfer systems of pOZ181 were similar to IncHI2 (e.g. R478) and contained a sul1-type class 1 integron with the cassette array: orf-dfrA1-orf-gcu37-aadA5 linked to an upstream Tn1696 tnpA-tnpR and to a downstream 3′ CS and ISCR1 A Tn2 transposon with a blaTEM-1b ß-lactamase was identified on pOZ182. Other interesting resistance determinants on the B38 chromosome included MDR efflux pumps, AmpC ß-lactamase, and resistances to Cu, Ag, As, and Zn. This is the first report of a complete tni module linked to a blaIMP- 4 carrying class 1 integron, and together with other recently reported non-sul1 integrons, represents the emergence of a distinct evolutionary lineage of class 1 integrons lacking a 3′ -CS (qacE?1-sul1). The unique cassette array, complete tni module of Tn6017, and incompatibility group of pOZ172 suggests a different blaIMP-4 evolutionary pathway in C. freundii B38 compared to other blaIMP-4 foundin Gram-negative bacteria in the Western Pacific Region. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 7, 2019

Genomic studies of nitrogen-fixing rhizobial strains from Phaseolus vulgaris seeds and nodules.

Rhizobia are soil bacteria that establish symbiotic relationships with legumes and fix nitrogen in root nodules. We recently reported that several nitrogen-fixing rhizobial strains, belonging to Rhizobium phaseoli, R. trifolii, R. grahamii and Sinorhizobium americanum, were able to colonize Phaseolus vulgaris (common bean) seeds. To gain further insight into the traits that support this ability, we analyzed the genomic sequences and proteomes of R. phaseoli (CCGM1) and S. americanum (CCGM7) strains from seeds and compared them with those of the closely related strains CIAT652 and CFNEI73, respectively, isolated only from nodules.In a fine structural study of the S. americanum genomes, the chromosomes, megaplasmids and symbiotic plasmids were highly conserved and syntenic, with the exception of the smaller plasmid, which appeared unrelated. The symbiotic tract of CCGM7 appeared more disperse, possibly due to the action of transposases. The chromosomes of seed strains had less transposases and strain-specific genes. The seed strains CCGM1 and CCGM7 shared about half of their genomes with their closest strains (3353 and 3472 orthologs respectively), but a large fraction of the rest also had homology with other rhizobia. They contained 315 and 204 strain-specific genes, respectively, particularly abundant in the functions of transcription, motility, energy generation and cofactor biosynthesis. The proteomes of seed and nodule strains were obtained and showed a particular profile for each of the strains. About 82 % of the proteins in the comparisons appeared similar. Forty of the most abundant proteins in each strain were identified; these proteins in seed strains were involved in stress responses and coenzyme and cofactor biosynthesis and in the nodule strains mainly in central processes. Only 3 % of the abundant proteins had hypothetical functions.Functions that were enriched in the genomes and proteomes of seed strains possibly participate in the successful occupancy of the new niche. The genome of the strains had features possibly related to their presence in the seeds. This study helps to understand traits of rhizobia involved in seed adaptation.


July 7, 2019

Comparative genomics reveals Lysinibacillus sphaericus group comprises a novel species.

Early in the 1990s, it was recognized that Lysinibacillus sphaericus, one of the most popular and effective entomopathogenic bacteria, was a highly heterogeneous group. Many authors have even proposed it comprises more than one species, but the lack of phenotypic traits that guarantee an accurate differentiation has not allowed this issue to be clarified. Now that genomic technologies are rapidly advancing, it is possible to address the problem from a whole genome perspective, getting insights into the phylogeny, evolutive history and biology itself.The genome of the Colombian strain L. sphaericus OT4b.49 was sequenced, assembled and annotated, obtaining 3 chromosomal contigs and no evidence of plasmids. Using these sequences and the 13 other L. sphaericus genomes available on the NCBI database, we carried out comparative genomic analyses that included whole genome alignments, searching for mobile elements, phylogenomic metrics (TETRA, ANI and in-silico DDH) and pan-genome assessments. The results support the hypothesis about this species as a very heterogeneous group. The entomopathogenic lineage is actually a single and independent species with 3728 core genes and 2153 accessory genes, whereas each non-toxic strain seems to be a separate species, though without a clear circumscription. Toxin-encoding genes, binA, B and mtx1, 2, 3 could be acquired via horizontal gene transfer in a single evolutionary event. The non-toxic strain OT4b.31 is the most related with the type strain KCTC 3346.The current L. sphaericus is actually a sensu lato due to a sub-estimation of diversity accrued using traditional non-genomics based classification strategies. The toxic lineage is the most studied with regards to its larvicidal activity, which is a greatly conserved trait among these strains and thus, their differentiating feature. Further studies are needed in order to establish a univocal classification of the non-toxic strains that, according to our results, seem to be a paraphyletic group.


July 7, 2019

Tracking inter-institutional spread of NDM and identification of a novel NDM-positive plasmid, pSg1-NDM, using next-generation sequencing approaches.

Owing to gene transposition and plasmid conjugation, New Delhi metallo-ß-lactamase (NDM) is typically identified among varied Enterobacteriaceae species and STs. We used WGS to characterize the chromosomal and plasmid molecular epidemiology of NDM transmission involving four institutions in Singapore.Thirty-three Enterobacteriaceae isolates (collection years 2010-14) were sequenced using short-read sequencing-by-synthesis and analysed. Long-read single molecule, real-time sequencing (SMRTS) was used to characterize genetically a novel plasmid pSg1-NDM carried on Klebsiella pneumoniae ST147.In 20 (61%) isolates, blaNDM was located on the pNDM-ECS01 plasmid in the background of multiple bacterial STs, including eight K. pneumoniae STs and five Escherichia coli STs. In six (18%) isolates, a novel blaNDM-positive plasmid, pSg1-NDM, was found only in K. pneumoniae ST147. The pSg1-NDM-K. pneumoniae ST147 clone (Sg1-NDM) was fully sequenced using SMRTS. pSg1-NDM, a 90?103 bp IncR plasmid, carried genes responsible for resistance to six classes of antimicrobials. A large portion of pSg1-NDM had no significant homology to any known plasmids in GenBank. pSg1-NDM had no conjugative transfer region. Combined chromosomal-plasmid phylogenetic analysis revealed five clusters of clonal bacterial NDM-positive plasmid transmission, of which two were inter-institution clusters. The largest inter-institution cluster involved six K. pneumoniae ST147-pSg1-NDM isolates. Fifteen patients were involved in transmission clusters, of which four had ward contact, six had hospital contact and five had an unknown transmission link.A combined sequencing-by-synthesis and SMRTS approach can determine effectively the transmission clusters of blaNDM and genetically characterize novel plasmids. Plasmid molecular epidemiology is important to understanding NDM spread as blaNDM-positive plasmids can conjugate extensively across species and STs.© The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.


July 7, 2019

Complete sequencing of plasmids containing blaOXA-163 and blaOXA-48 in Escherichia coli ST131.

OXA-48-like enzymes have emerged as important extended-spectrum ß-lactamases/carbapenemases in E. coli ST131. We report the structure of the first fully sequenced blaOXA-163 plasmid, and of two other blaOXA-48 plasmids in this lineage. blaOXA-163 was located on a 71kb IncN plasmid with other resistance genes. blaOXA-48 was present on IncL/M plasmids, genetically similar to other blaOXA-48 plasmid sequences, and consistent with inter-species/inter-lineage spread. The presence of blaOXA-48-like genes on epidemic plasmids in ST131 is of concern. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 7, 2019

Plasmids from Shiga toxin-producing Escherichia coli strains with rare enterohemolysin gene (ehxA) subtypes reveal pathogenicity potential and display a novel evolutionary path.

Most Shiga toxin-producing Escherichia coli (STEC) strains associated with severe disease, such as hemolytic-uremic syndrome (HUS), carry large enterohemolysin-encoding (ehxA) plasmids, e.g., pO157 and pO103, that contribute to STEC clinical manifestations. Six ehxA subtypes (A through F) exist that phylogenetically cluster into eae-positive (B, C, F), a mix of eae-positive (E) and eae-negative (A), and a third, more distantly related, cluster of eae-negative (D) STEC strains. While subtype B, C, and F plasmids share a number of virulence traits that are distinct from those of subtype A, sequence data have not been available for subtype D and E plasmids. Here, we determined and compared the genetic composition of four subtype D and two subtype E plasmids to establish their evolutionary relatedness among ehxA subtypes and define their potential role in pathogenicity. We found that subtype D strains carry one exceptionally large plasmid (>200 kbp) that carries a variety of virulence genes that are associated with enterotoxigenic and enterohemorrhagic E. coli, which, quite possibly, enables these strains to cause disease despite being food isolates. Our data offer further support for the hypothesis that this subtype D plasmid represents a novel virulence plasmid, sharing very few genetic features with other plasmids; we conclude that these plasmids have evolved from a different evolutionary lineage than the plasmids carrying the other ehxA subtypes. In contrast, the 50-kbp plasmids of subtype E (pO145), although isolated from HUS outbreak strains, carried only few virulence-associated determinants, suggesting that the clinical presentation of subtype E strains is largely a result of chromosomally encoded virulence factors.Bacterial plasmids are known to be key agents of change in microbial populations, promoting the dissemination of various traits, such as drug resistance and virulence. This study determined the genetic makeup of virulence plasmids from rare enterohemolysin subtype D and E Shiga toxin-producing E. coli strains. We demonstrated that ehxA subtype D plasmids represent a novel E. coli virulence plasmid, and although subtype D plasmids were derived from nonclinical isolates, they encoded a variety of virulence determinants that are associated with pathogenic E. coli In contrast, subtype E plasmids, isolated from strains recovered from severely ill patients, carry only a few virulence determinants. The results of this study reemphasize the plasticity and vast diversity among E. coli plasmids. This work demonstrates that, although E. coli strains of certain serogroups may not be frequently associated with disease, they should not be underestimated in protecting human health and food safety. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 7, 2019

Genomic recombination leading to decreased virulence of group B Streptococcus in a mouse model of adult invasive disease.

Adult invasive disease caused by Group B Streptococcus (GBS) is increasing worldwide. Whole-genome sequencing (WGS) now permits rapid identification of recombination events, a phenomenon that occurs frequently in GBS. Using WGS, we described that strain NGBS375, a capsular serotype V GBS isolate of sequence type (ST)297, has an ST1 genomic background but has acquired approximately 300 kbp of genetic material likely from an ST17 strain. Here, we examined the virulence of this strain in an in vivo model of GBS adult invasive infection. The mosaic ST297 strain showed intermediate virulence, causing significantly less systemic infection and reduced mortality than a more virulent, serotype V ST1 isolate. Bacteremia induced by the ST297 strain was similar to that induced by a serotype III ST17 strain, which was the least virulent under the conditions tested. Yet, under normalized bacteremia levels, the in vivo intrinsic capacity to induce the production of pro-inflammatory cytokines was similar between the ST297 strain and the virulent ST1 strain. Thus, the diminished virulence of the mosaic strain may be due to reduced capacity to disseminate or multiply in blood during a systemic infection which could be mediated by regulatory factors contained in the recombined region.


July 7, 2019

Comparative genomics of Campylobacter iguaniorum to unravel genetic regions associated with reptilian hosts.

Campylobacter iguaniorum is most closely related to the species C fetus, C hyointestinalis, and C lanienae Reptiles, chelonians and lizards in particular, appear to be a primary reservoir of this Campylobacter species. Here we report the genome comparison of C iguaniorum strain 1485E, isolated from a bearded dragon (Pogona vitticeps), and strain 2463D, isolated from a green iguana (Iguana iguana), with the genomes of closely related taxa, in particular with reptile-associated C fetus subsp. testudinum In contrast to C fetus, C iguaniorum is lacking an S-layer encoding region. Furthermore, a defined lipooligosaccharide biosynthesis locus, encoding multiple glycosyltransferases and bounded by waa genes, is absent from C iguaniorum Instead, multiple predicted glycosylation regions were identified in C iguaniorum One of these regions is > 50 kb with deviant G + C content, suggesting acquisition via lateral transfer. These similar, but non-homologous glycosylation regions were located at the same position on the genome in both strains. Multiple genes encoding respiratory enzymes not identified to date within the C. fetus clade were present. C iguaniorum shared highest homology with C hyointestinalis and C fetus. As in reptile-associated C fetus subsp. testudinum, a putative tricarballylate catabolism locus was identified. However, despite colonizing a shared host, no recent recombination between both taxa was detected. This genomic study provides a better understanding of host adaptation, virulence, phylogeny, and evolution of C iguaniorum and related Campylobacter taxa. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


July 7, 2019

Borneol dehydrogenase from Pseudomonas sp. strain TCU-HL1 catalyzes the oxidation of (+)-borneol and its isomers to camphor.

Most plant-produced monoterpenes can be degraded by soil microorganisms. Borneol is a plant terpene that is widely used in traditional Chinese medicine. Neither microbial borneol dehydrogenase (BDH) nor a microbial borneol degradation pathway has been reported previously. One borneol-degrading strain, Pseudomonas sp. strain TCU-HL1, was isolated by our group. Its genome was sequenced and annotated. The genome of TCU-HL1 consists of a 6.2-Mbp circular chromosome and one circular plasmid, pTHL1 (12.6 kbp). Our results suggest that borneol is first converted into camphor by BDH in TCU-HL1 and is further decomposed through a camphor degradation pathway. The recombinant BDH was produced in the form of inclusion bodies. The apparent Km values of refolded recombinant BDH for (+)-borneol and (-)-borneol were 0.20 ± 0.01 and 0.16 ± 0.01 mM, respectively, and the kcat values for (+)-borneol and (-)-borneol were 0.75 ± 0.01 and 0.53 ± 0.01 s(-1), respectively. Two plant BDH genes have been reported previously. The kcat and kcat/Km values of lavender BDH are about 1,800-fold and 500-fold lower, respectively, than those of TCU-HL1 BDH.The degradation of borneol in a soil microorganism through a camphor degradation pathway is reported in this study. We also report a microbial borneol dehydrogenase. The kcat and kcat/Km values of lavender BDH are about 1,800-fold and 500-fold lower, respectively, than those of TCU-HL1 BDH. The indigenous borneol- and camphor-degrading strain isolated, Pseudomonas sp. strain TCU-HL1, reminds us of the time 100 years ago when Taiwan was the major producer of natural camphor in the world. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 7, 2019

IncHI2 plasmids are the key vectors responsible for oqxAB transmission among Salmonella species.

This study reported and analysed the complete sequences of two oqxAB-bearing IncHI2 plasmids harboured by a clinical S. Typhimurium strain and an S. Indiana strain of animal origin, respectively. Particularly, pA3T recovered from S. Indiana comprised the resistance determinants oqxAB, aac(6′)Ib-cr, fosA3 and blaCTX-M-14 Further genetic screening of 63 oqxAB-positive Salmonella spp. isolates revealed that the majority carried IncHI2 plasmids, confirming that such plasmids play a pivotal role in dissemination of oqxAB in Salmonella spp.. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 7, 2019

Multiplication of blaOXA-23 is common in clinical Acinetobacter baumannii, but does not enhance carbapenem resistance.

To investigate the copy number of blaOXA-23 and its correlation with carbapenem resistance in carbapenem-resistant Acinetobacter baumannii (CRAB).A total of 113 blaOXA-23-positive clinical CRAB isolates were collected from two hospitals in Zhejiang province, China. Their genetic relatedness was determined by MLST. The MIC of imipenem was determined using the agar diffusion method and the copy number of blaOXA-23 was measured using quantitative real-time PCR (qRT-PCR). The complete genomes of five clinical CRAB strains were sequenced using PacBio technology to investigate the multiplication mechanism of blaOXA-23.Most of the isolates (100/113) belonged to global clone II and the MIC of imipenem ranged from 16 to 96 mg/L. The gene blaOXA-23 resided exclusively in Tn2006 or Tn2009. Approximately 38% of the isolates carried two or more copies of blaOXA-23. The copy number of blaOXA-23 was not correlated with the MIC of imipenem. Within the five sequenced strains, multiple copies of blaOXA-23 were either tandemly clustered or independently inserted at different genomic sites.Multiplication of blaOXA-23 is common in CRAB, but does not enhance carbapenem resistance. Multiplication can be present in the form of either tandem amplifications or independent insertions at different sites.© The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.