Menu
September 22, 2019  |  

Distribution of the pco gene cluster and associated genetic determinants among swine Escherichia coli from a controlled feeding trial.

Copper is used as an alternative to antibiotics for growth promotion and disease prevention. However, bacteria developed tolerance mechanisms for elevated copper concentrations, including those encoded by the pco operon in Gram-negative bacteria. Using cohorts of weaned piglets, this study showed that the supplementation of feed with copper concentrations as used in the field did not result in a significant short-term increase in the proportion of pco-positive fecal Escherichia coli. The pco and sil (silver resistance) operons were found concurrently in all screened isolates, and whole-genome sequencing showed that they were distributed among a diversity of unrelated E. coli strains. The presence of pco/sil in E. coli was not associated with elevated copper minimal inhibitory concentrations (MICs) under a variety of conditions. As found in previous studies, the pco/sil operons were part of a Tn7-like structure found both on the chromosome or on plasmids in the E. coli strains investigated. Transfer of a pco/sil IncHI2 plasmid from E. coli to Salmonellaenterica resulted in elevated copper MICs in the latter. Escherichia coli may represent a reservoir of pco/sil genes transferable to other organisms such as S. enterica, for which it may represent an advantage in the presence of copper. This, in turn, has the potential for co-selection of resistance to antibiotics.


September 22, 2019  |  

Comparative analysis of blaKPC-2- and rmtB-carrying IncFII-family pKPC-LK30/pHN7A8 hybrid plasmids from Klebsiella pneumoniae CG258 strains disseminated among multiple Chinese hospitals.

We recently reported the complete sequence of a blaKPC-2- and rmtB-carrying IncFII-family plasmid p675920-1 with the pKPC-LK30/pHN7A8 hybrid structure. Comparative genomics of additional sequenced plasmids with similar hybrid structures and their prevalence in blaKPC-carrying Klebsiella pneumoniae strains from China were investigated in this follow-up study.A total of 51 blaKPC-carrying K. pneumoniae strains were isolated from 2012 to 2016 from five Chinese hospitals and genotyped by multilocus sequence typing. The blaKPC-carrying plasmids from four representative strains were sequenced and compared with p675920-1 and pCT-KPC. Plasmid transfer, carbapenemase activity determination, and bacterial antimicrobial susceptibility test were performed to characterize resistance phenotypes mediated by these plasmids. The prevalence of pCT-KPC-like plasmids in these blaKPC-carrying K. pneumoniae strains was screened by PCR.The six KPC-encoding plasmids p1068-KPC, p20049-KPC, p12139-KPC and p64917-KPC (sequenced in this study) and p675920-1 and pCT-KPC slightly differed from one another due to deletion and acquisition of various backbone and accessory regions. Two major accessory resistance regions, which included the blaKPC-2 region harboring blaKPC-2 (carbapenem resistance) and blaSHV-12 (ß-lactam resistance), and the MDR region carrying rmtB (aminoglycoside resistance), fosA3 (fosfomycin resistance), blaTEM-1B (ß-lactam resistance) and blaCTX-M-65 (ß-lactam resistance), were found in each of these six plasmids and exhibited several parallel evolution routes. The pCT-KPC-like plasmids were present in all the 51 K. pneumoniae isolates, all of which belonged to CG258.There was clonal dissemination of K. pneumoniae CG258 strains, harboring blaKPC-2- and rmtB-carrying IncFII-family pKPC-LK30/pHN7A8 hybrid plasmids, among multiple Chinese hospitals.


September 22, 2019  |  

Loss of bacitracin resistance due to a large genomic deletion among Bacillus anthracis strains.

Bacillus anthracis is a Gram-positive endospore-forming bacterial species that causes anthrax in both humans and animals. In Zambia, anthrax cases are frequently reported in both livestock and wildlife, with occasional transmission to humans, causing serious public health problems in the country. To understand the genetic diversity of B. anthracis strains in Zambia, we sequenced and compared the genomic DNA of B. anthracis strains isolated across the country. Single nucleotide polymorphisms clustered these strains into three groups. Genome sequence comparisons revealed a large deletion in strains belonging to one of the groups, possibly due to unequal crossing over between a pair of rRNA operons. The deleted genomic region included genes conferring resistance to bacitracin, and the strains with the deletion were confirmed with loss of bacitracin resistance. Similar deletions between rRNA operons were also observed in a few B. anthracis strains phylogenetically distant from Zambian strains. The structure of bacitracin resistance genes flanked by rRNA operons was conserved only in members of the Bacillus cereus group. The diversity and genomic characteristics of B. anthracis strains determined in this study would help in the development of genetic markers and treatment of anthrax in Zambia. IMPORTANCE Anthrax is caused by Bacillus anthracis, an endospore-forming soil bacterium. The genetic diversity of B. anthracis is known to be low compared with that of Bacillus species. In this study, we performed whole-genome sequencing of Zambian isolates of B. anthracis to understand the genetic diversity between closely related strains. Comparison of genomic sequences revealed that closely related strains were separated into three groups based on single nucleotide polymorphisms distributed throughout the genome. A large genomic deletion was detected in the region containing a bacitracin resistance gene cluster flanked by rRNA operons, resulting in the loss of bacitracin resistance. The structure of the deleted region, which was also conserved among species of the Bacillus cereus group, has the potential for both deletion and amplification and thus might be enabling the species to flexibly control the level of bacitracin resistance for adaptive evolution.


September 22, 2019  |  

SKA: Split Kmer Analysis Toolkit for Bacterial Genomic Epidemiology

Genome sequencing is revolutionising infectious disease epidemiology, providing a huge step forward in sensitivity and specificity over more traditional molecular typing techniques. However, the complexity of genome data often means that its analysis and interpretation requires high-performance compute infrastructure and dedicated bioinformatics support. Furthermore, current methods have limitations that can differ between analyses and are often opaque to the user, and their reliance on multiple external dependencies makes reproducibility difficult. Here I introduce SKA, a toolkit for analysis of genome sequence data from closely-related, small, haploid genomes. SKA uses split kmers to rapidly identify variation between genome sequences, making it possible to analyse hundreds of genomes on a standard home computer. Tests on publicly available simulated and real-life data show that SKA is both faster and more efficient than the gold standard methods used today while retaining similar levels of accuracy for epidemiological purposes. SKA can take raw read data or genome assemblies as input and calculate pairwise distances, create single linkage clusters and align genomes to a reference genome or using a reference-free approach. SKA requires few decisions to be made by the user, which, along with its computational efficiency, allows genome analysis to become accessible to those with only basic bioinformatics training. The limitations of SKA are also far more transparent than for current approaches, and future improvements to mitigate these limitations are possible. Overall, SKA is a powerful addition to the armoury of the genomic epidemiologist. SKA source code is available from Github (https://github.com/simonrharris/SKA).


September 22, 2019  |  

Eco-friendly Management of Karnal Bunt (Neovossia indica) of Wheat

Karnal bunt incited by Neovossia indica is one of the most important disease of wheat crop. To develop an eco-friendly management practice against Karnal bunt of wheat, integration of fungicidal seed treatment with foliar sprays of phytoextracts, bio-control agent and fungicide revealed. Uses of Thiram 75DS or Kavach 75WP @2g/Kg, Dithane M-45 or Captan [email protected]/Kg, Vitavax [email protected]/Kg, Tilt 25EC or Raxil 2DS@1mL/Kg or Pseudomonas fluorescens@5 mL/Kg or Trichoderma viride (Ecoderma) or T. harzianum@5 mL/Kg seed treatment for eliminating primary inoculum (teliospores). Seed soaking in Lantana (L. camara) or Eucalyptus (E. globulus) or Akh (Calotropis procera) or Kali basuti (Eupatorium adenophorum) @ 250 mL/L for 60 min and dry in shad are effective in eradicating the seed infection also. Application foliar spray of Baycor 25WP or Bavistin 50WP or F-100 or Moximate [email protected]/Kg, Tilt 25EC or Folicur 25EC or Contaf 25EC@1mL/Kg at boot leaf stage and 50% emergence flowering heads against the secondary air-borne inoculum (Allantoides sporidia). This is concerning integration of fungicide seed treatment with foliar spray of bio- control agent and phyto-extract. It is cheaper and eco-friendly practice for the control of Karnal bunt of wheat.


September 22, 2019  |  

pYR4 from a Norwegian isolate of Yersinia ruckeri is a putative virulence plasmid encoding both a type IV pilus and a type IV secretion system

Enteric redmouth disease caused by the pathogen Yersinia ruckeri is a significant problem for fish farming around the world. Despite its importance, only a few virulence factors of Y. ruckeri have been identified and studied in detail. Here, we report and analyze the complete DNA sequence of pYR4, a plasmid from a highly pathogenic Norwegian Y. ruckeri isolate, sequenced using PacBio SMRT technology. Like the well-known pYV plasmid of human pathogenic Yersiniae, pYR4 is a member of the IncFII family. Thirty-one percent of the pYR4 sequence is unique compared to other Y. ruckeri plasmids. The unique regions contain, among others genes, a large number of mobile genetic elements and two partitioning systems. The G+C content of pYR4 is higher than that of the Y. ruckeri NVH_3758 genome, indicating its relatively recent horizontal acquisition. pYR4, as well as the related plasmid pYR3, comprises operons that encode for type IV pili and for a conjugation system (tra). In contrast to other Yersinia plasmids, pYR4 cannot be cured at elevated temperatures. Our study highlights the power of PacBio sequencing technology for identifying mis-assembled segments of genomic sequences. Comparative analysis of pYR4 and other Y. ruckeri plasmids and genomes, which were sequenced by second and the third generation sequencing technologies, showed errors in second generation sequencing assemblies. Specifically, in the Y. ruckeri 150 and Y. ruckeri ATCC29473 genome assemblies, we mapped the entire pYR3 plasmid sequence. Placing plasmid sequences on the chromosome can result in erroneous biological conclusions. Thus, PacBio sequencing or similar long-read methods should always be preferred for de novo genome sequencing. As the tra operons of pYR3, although misplaced on the chromosome during the genome assembly process, were demonstrated to have an effect on virulence, and type IV pili are virulence factors in many bacteria, we suggest that pYR4 directly contributes to Y. ruckeri virulence.


September 22, 2019  |  

Whole-Genome Analysis of an Extensively Drug-Resistant Acinetobacter baumannii Strain XDR-BJ83: Insights into the Mechanisms of Resistance of an ST368 Strain from a Tertiary Care Hospital in China.

Acinetobacter baumannii is an important pathogen of nosocomial infections. Nosocomial outbreaks caused by antibiotic-resistant A. baumannii remain a significant challenge. Understanding the antibiotic resistance mechanism of A. baumannii is critical for clinical treatment. The purpose of this study was to determine the whole-genome sequence (WGS) of an extensively drug-resistant (XDR) A. baumannii strain, XDR-BJ83, which was associated with a nosocomial outbreak in a tertiary care hospital of China, and to investigate the antibiotic resistance mechanism of this strain. The WGS of XDR-BJ83 was performed using single-molecule real-time sequencing. The complete genome of XDR-BJ83 consisted of a 4,011,552-bp chromosome and a 69,069-bp plasmid. The sequence type of XDR-BJ83 was ST368, which belongs to clonal complex 92 (CC92). The chromosome of XDR-BJ83 carried multiple antibiotic resistance genes, antibiotic efflux pump genes, and mobile genetic elements, including insertion sequences, transposons, integrons, and resistance islands. The plasmid of XDR-BJ83 (pBJ83) was a conjugative plasmid carrying type IV secretion system. These results indicate that the presence of multiple antibiotic resistance genes, efflux pumps, and mobile genetic elements is likely associated with resistance to various antibiotics in XDR-BJ83.


September 22, 2019  |  

Prevalence, antimicrobial resistance and phylogenetic characterization of Yersinia enterocolitica in retail poultry meat and swine feces in parts of China

Yersinia enterocolitica is an enteropathogen transmitted by contaminated food. In this study, a total of 500 retail poultry meat samples from 4 provinces and 145 swine feces samples from 12 provinces in China was tested for Y. enterocolitica and 26 isolates were obtained for further bio-serotyping, testing with antimicrobial susceptibility testing to a panel of antimicrobial compounds, and genetically characterization based on the whole genome sequencing. Higher prevalence (4.8%) of Y. enterocolitica contamination in retail poultry meat than that in swine feces (2.76%) was observed. No difference in bio-serotypes, multilocus sequence typing (MLST) and virulence genes distribution between swine and poultry origin were found. All isolates were resistant to ampicillin, amoxicillin/clavulanic acid, and cefazolin and were multi-drug resistant (MDR). The most predominant drug-resistance profile was AMP-CFZ-AMC-FOX (42.31%). A pathogenic isolate with bio-serotype 3/O:3 and ST135 was cultured from retail fresh chicken meat for the first time in China. Based on the whole-genome single nucleotide polymorphisms (SNPs) tree analysis, pathogenic isolates clustered closely, while nonpathogenic isolates exhibited high genetic heterogeneity. These indicated that pathogenic isolates were conserved on genetic level. The whole-genome SNP tree also revealed that Y. enterocolitica of swine, chicken and duck origin may share a common ancestor. The findings highlight the emergence of drug-resistant pathogenic Y. entrocoliticas in retailed poultry meats in China.


September 22, 2019  |  

Phylogenomics of colistin-susceptible and resistant XDR Acinetobacter baumannii.

Acinetobacter baumannii is a healthcare-associated pathogen with high rates of carbapenem resistance. Colistin is now routinely used for treatment of infections by this pathogen. However, colistin use has been associated with development of resistance to this agent.To elucidate the phylogenomics of colistin-susceptible and -resistant A. baumannii strain pairs from a cohort of hospitalized patients at a tertiary medical centre in the USA.WGS data from 21 pairs of colistin-susceptible and -resistant, XDR clinical strains were obtained and compared using phylogeny of aligned genome sequences, assessment of pairwise SNP differences and gene content.Fourteen patients had colistin-resistant strains that were highly genetically related to their own original susceptible strain with a median pairwise SNP distance of 5.5 (range 1-40 SNPs), while seven other strain pairs were divergent with =84 SNP differences. In addition, several strains from different patients formed distinct clusters on the phylogeny in keeping with closely linked transmission chains. The majority of colistin-resistant strains contained non-synonymous mutations within the pmrAB locus suggesting a central role for pmrAB mutations in colistin resistance. Excellent genotype-phenotype correlation was also observed for carbapenems, aminoglycosides and tetracyclines.The findings suggest that colistin resistance in the clinical setting arises through both in vivo evolution from colistin-susceptible strains and reinfection by unrelated colistin-resistant strains, the latter of which may involve patient-to-patient transmission.


September 22, 2019  |  

Diversity of DHA-1-encoding plasmids in Klebsiella pneumoniae isolates from 16 French hospitals.

To provide new insights into the spread of plasmidic cephalosporinase DHA-1, 16 strains of Klebsiella pneumoniae and a strain of Klebsiella variicola producing DHA-1 were isolated between January 2012 and December 2013 in six regions of France and two French overseas departments and territories.Disc diffusion assays, isoelectric focusing and PCRs were used to characterize the plasmidic DHA-1 ß-lactamase. Plasmid analysis was performed by the method of Kado and Liu and WGS. Virulence of the strains was studied by biofilm formation and the survival of Drosophila.The strains were of low virulence and had one to three plasmids including one of various sizes (~40 to 319?kb) mediating DHA-1. Nine strains belonged to ST11 and possessed a pKPS30-type DHA-1 plasmid of the IncR (incompatibility) group. A strain of ST307 possessed pENVA, a DHA-1 plasmid of the IncH-type group. The seven remaining plasmids were unknown. Three belonged to the IncL/M group. They were closely related and their sequences were determined. One of the four remaining strains was chosen for further investigation. This strain of ST16 had two plasmids, a pUUH239.2-related plasmid and a new DHA-1 plasmid of ~319?kb of IncHI2 type.These findings demonstrate the major role of the pKPS30-type plasmid in the spread of DHA-1 cephalosporinase in France and provide evidence of two new emerging plasmids carrying this enzyme.


September 22, 2019  |  

Tracing back multidrug-resistant bacteria in fresh herb production: from chive to source through the irrigation water chain.

Environmental antibiotic-resistant bacteria (ARB) can be transferred to humans through foods. Fresh produce in particular is an ideal vector due to frequent raw consumption. A major contamination source of fresh produce is irrigation water. We hypothesized that water quality significantly affects loads of ARB and their diversity on fresh produce despite various other contamination sources present under agricultural practice conditions. Chive irrigated from an open-top reservoir or sterile-filtered water (control) was examined. Heterotrophic plate counts (HPC) and ARB were determined for water and chive with emphasis on Escherichia coli and Enterococcus spp. High HPC of freshly planted chive decreased over time and were significantly lower on control- vs. reservoir-irrigated chive at harvest (1.3 log (CFU/g) lower). Ciprofloxacin- and ceftazidime-resistant bacteria were significantly lower on control-irrigated chive at harvest and end of shelf life (up to 1.8 log (CFU/g) lower). Escherichia coli and Enterococcus spp. repeatedly isolated from water and chive proved resistant to up to six or four antibiotic classes (80% or 49% multidrug-resistant, respectively). Microbial source tracking identified E. coli-ST1056 along the irrigation chain and on chive. Whole-genome sequencing revealed that E. coli-ST1056 from both environments were clonal and carried the same transmissible multidrug-resistance plasmid, proving water as source of chive contamination. These findings emphasize the urgent need for guidelines concerning ARB in irrigation water and development of affordable water disinfection technologies to diminish ARB on irrigated produce.


September 22, 2019  |  

Antibiotic-resistant indicator bacteria in irrigation water: High prevalence of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli.

Irrigation water is a major source of fresh produce contamination with undesired microorganisms including antibiotic-resistant bacteria (ARB), and contaminated fresh produce can transfer ARB to the consumer especially when consumed raw. Nevertheless, no legal guidelines exist so far regulating quality of irrigation water with respect to ARB. We therefore examined irrigation water from major vegetable growing areas for occurrence of antibiotic-resistant indicator bacteria Escherichia coli and Enterococcus spp., including extended-spectrum ß-lactamase (ESBL)-producing E. coli and vancomycin-resistant Enterococcus spp. Occurrence of ARB strains was compared to total numbers of the respective species. We categorized water samples according to total numbers and found that categories with higher total E. coli or Enterococcus spp. numbers generally had an increased proportion of respective ARB-positive samples. We further detected high prevalence of ESBL-producing E. coli with eight positive samples of thirty-six (22%), while two presumptive vancomycin-resistant Enterococcus spp. were vancomycin-susceptible in confirmatory tests. In disk diffusion assays all ESBL-producing E. coli were multidrug-resistant (n = 21) and whole-genome sequencing of selected strains revealed a multitude of transmissible resistance genes (ARG), with blaCTX-M-1 (4 of 11) and blaCTX-M-15 (3 of 11) as the most frequent ESBL genes. Overall, the increased occurrence of indicator ARB with increased total indicator bacteria suggests that the latter might be a suitable estimate for presence of respective ARB strains. Finally, the high prevalence of ESBL-producing E. coli with transmissible ARG emphasizes the need to establish legal critical values and monitoring guidelines for ARB in irrigation water.


September 22, 2019  |  

The enterococcus cassette chromosome, a genomic variation enabler in enterococci.

Enterococcus faecium has a highly variable genome prone to recombination and horizontal gene transfer. Here, we have identified a novel genetic island with an insertion locus and mobilization genes similar to those of staphylococcus cassette chromosome elements SCCmec This novel element termed the enterococcus cassette chromosome (ECC) element was located in the 3′ region of rlmH and encoded large serine recombinases ccrAB similar to SCCmec Horizontal transfer of an ECC element termed ECC::cat containing a knock-in cat chloramphenicol resistance determinant occurred in the presence of a conjugative reppLG1 plasmid. We determined the ECC::cat insertion site in the 3′ region of rlmH in the E. faecium recipient by long-read sequencing. ECC::cat also mobilized by homologous recombination through sequence identity between flanking insertion sequence (IS) elements in ECC::cat and the conjugative plasmid. The ccrABEnt genes were found in 69 of 516 E. faecium genomes in GenBank. Full-length ECC elements were retrieved from 32 of these genomes. ECCs were flanked by attR and attL sites of approximately 50?bp. The attECC sequences were found by PCR and sequencing of circularized ECCs in three strains. The genes in ECCs contained an amalgam of common and rare E. faecium genes. Taken together, our data imply that ECC elements act as hot spots for genetic exchange and contribute to the large variation of accessory genes found in E. faeciumIMPORTANCEEnterococcus faecium is a bacterium found in a great variety of environments, ranging from the clinic as a nosocomial pathogen to natural habitats such as mammalian intestines, water, and soil. They are known to exchange genetic material through horizontal gene transfer and recombination, leading to great variability of accessory genes and aiding environmental adaptation. Identifying mobile genetic elements causing sequence variation is important to understand how genetic content variation occurs. Here, a novel genetic island, the enterococcus cassette chromosome, is shown to contain a wealth of genes, which may aid E. faecium in adapting to new environments. The transmission mechanism involves the only two conserved genes within ECC, ccrABEnt, large serine recombinases that insert ECC into the host genome similarly to SCC elements found in staphylococci. Copyright © 2018 Sivertsen et al.


September 22, 2019  |  

Spread of the florfenicol resistance floR gene among clinical Klebsiella pneumoniae isolates in China.

Florfenicol is a derivative of chloramphenicol that is used only for the treatment of animal diseases. A key resistance gene for florfenicol, floR, can spread among bacteria of the same and different species or genera through horizontal gene transfer. To analyze the potential transmission of resistance genes between animal and human pathogens, we investigated floR in Klebsiella pneumoniae isolates from patient samples. floR in human pathogens may originate from animal pathogens and would reflect the risk to human health of using antimicrobial agents in animals.PCR was used to identify floR-positive strains. The floR genes were cloned, and the minimum inhibitory concentrations (MICs) were determined to assess the relative resistance levels of the genes and strains. Sequencing and comparative genomics methods were used to analyze floR gene-related sequence structure as well as the molecular mechanism of resistance dissemination.Of the strains evaluated, 20.42% (67/328) were resistant to florfenicol, and 86.96% (20/23) of the floR-positive strains demonstrated high resistance to florfenicol with MICs =512 µg/mL. Conjugation experiments showed that transferrable plasmids carried the floR gene in three isolates. Sequencing analysis of a plasmid approximately 125 kb in size (pKP18-125) indicated that the floR gene was flanked by multiple copies of mobile genetic elements. Comparative genomics analysis of a 9-kb transposon-like fragment of pKP18-125 showed that an approximately 2-kb sequence encoding lysR-floR-virD2 was conserved in the majority (79.01%, 83/105) of floR sequences collected from NCBI nucleotide database. Interestingly, the most similar sequence was a 7-kb fragment of plasmid pEC012 from an Escherichia coli strain isolated from a chicken.Identified on a transferable plasmid in the human pathogen K. pneumoniae, the floR gene may be disseminated through horizontal gene transfer from animal pathogens. Studies on the molecular mechanism of resistance gene dissemination in different bacterial species of animal origin could provide useful information for preventing or controlling the spread of resistance between animal and human pathogens.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.