Menu
September 22, 2019  |  

Whole-Genome Analysis of an Extensively Drug-Resistant Acinetobacter baumannii Strain XDR-BJ83: Insights into the Mechanisms of Resistance of an ST368 Strain from a Tertiary Care Hospital in China.

Authors: Zhang, Yang-Yang and Liang, Zhi-Xin and Li, Chun-Sun and Chang, Yan and Ma, Xiu-Qing and Yu, Ling and Chen, Liang-An

Acinetobacter baumannii is an important pathogen of nosocomial infections. Nosocomial outbreaks caused by antibiotic-resistant A. baumannii remain a significant challenge. Understanding the antibiotic resistance mechanism of A. baumannii is critical for clinical treatment. The purpose of this study was to determine the whole-genome sequence (WGS) of an extensively drug-resistant (XDR) A. baumannii strain, XDR-BJ83, which was associated with a nosocomial outbreak in a tertiary care hospital of China, and to investigate the antibiotic resistance mechanism of this strain. The WGS of XDR-BJ83 was performed using single-molecule real-time sequencing. The complete genome of XDR-BJ83 consisted of a 4,011,552-bp chromosome and a 69,069-bp plasmid. The sequence type of XDR-BJ83 was ST368, which belongs to clonal complex 92 (CC92). The chromosome of XDR-BJ83 carried multiple antibiotic resistance genes, antibiotic efflux pump genes, and mobile genetic elements, including insertion sequences, transposons, integrons, and resistance islands. The plasmid of XDR-BJ83 (pBJ83) was a conjugative plasmid carrying type IV secretion system. These results indicate that the presence of multiple antibiotic resistance genes, efflux pumps, and mobile genetic elements is likely associated with resistance to various antibiotics in XDR-BJ83.

Journal: Microbial drug resistance
DOI: 10.1089/mdr.2017.0246
Year: 2018

Read publication

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.