fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, September 22, 2019

Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection.

Productivity of ruminant livestock depends on the rumen microbiota, which ferment indigestible plant polysaccharides into nutrients used for growth. Understanding the functions carried out by the rumen microbiota is important for reducing greenhouse gas production by ruminants and for developing biofuels from lignocellulose. We present 410 cultured bacteria and archaea, together with their reference genomes, representing every cultivated rumen-associated archaeal and bacterial family. We evaluate polysaccharide degradation, short-chain fatty acid production and methanogenesis pathways, and assign specific taxa to functions. A total of 336 organisms were present in available rumen metagenomic data sets, and 134 were present in human gut…

Read More »

Sunday, September 22, 2019

Design of primers for evaluation of lactic acid bacteria populations in complex biological samples.

Lactic acid bacteria (LAB) are important for human health. However, the relative abundance of LAB in complex samples, such as fecal samples, is low and their presence and diversity (at the species level) is understudied. Therefore, we designed LAB-specific primer pairs based on 16S rRNA gene consensus sequences from 443 species of LAB from seven genera. The LAB strains selected were genetically similar and known to play a role in human health. Prior to primer design, we obtained consistent sequences for the primer-binding sites by comparing the 16S rRNA gene sequences, manually identifying single-stranded primers and modifying these primers using…

Read More »

Sunday, September 22, 2019

Genomic insights into the acid adaptation of novel methanotrophs enriched from acidic forest soils.

Soil acidification is accelerated by anthropogenic and agricultural activities, which could significantly affect global methane cycles. However, detailed knowledge of the genomic properties of methanotrophs adapted to acidic soils remains scarce. Using metagenomic approaches, we analyzed methane-utilizing communities enriched from acidic forest soils with pH 3 and 4, and recovered near-complete genomes of proteobacterial methanotrophs. Novel methanotroph genomes designated KS32 and KS41, belonging to two representative clades of methanotrophs (Methylocystis of Alphaproteobacteria and Methylobacter of Gammaproteobacteria), were dominant. Comparative genomic analysis revealed diverse systems of membrane transporters for ensuring pH homeostasis and defense against toxic chemicals. Various potassium transporter systems,…

Read More »

Sunday, September 22, 2019

Complete genome sequence of Enterococcus durans Oregon-R-modENCODE strain BDGP3, a lactic acid bacterium found in the Drosophila melanogaster gut

Enterococcus durans Oregon-R-modENCODE strain BDGP3 was isolated from the Drosophila melanogaster gut for functional host-microbe interaction studies. The complete genome is composed of a single circular genome of 2,983,334 bp, with a G+C content of 38%, and a single plasmid of 5,594 bp. Copyright © 2017 Wan et al.

Read More »

Sunday, September 22, 2019

Investigating bacterial population structure and dynamics in traditional koumiss from Inner Mongolia using single molecule real-time sequencing.

Koumiss is considered as a complete dairy product high in nutrients and with medicinal properties. The bacterial communities involved in production of koumiss play a crucial role in the fermentation cycle. To reveal bacterial biodiversity in koumiss and the dynamics of succession in bacterial populations during fermentation, 22 samples were collected from 5 sampling sites and the full length of the 16S ribosomal RNA genes sequenced using single molecule real-time sequencing technology. One hundred forty-eight species were identified from 82 bacterial genera and 8 phyla. These results suggested that the structural difference in the bacterial community could be attributed to…

Read More »

Sunday, September 22, 2019

Assessment of the physicochemical properties and bacterial composition of Lactobacillus plantarum and Enterococcus faecium-fermented Astragalus membranaceus using single molecule, real-time sequencing technology.

We investigated if fermentation with probiotic cultures could improve the production of health-promoting biological compounds in Astragalus membranaceus. We tested the probiotics Enterococcus faecium, Lactobacillus plantarum and Enterococcus faecium?+?Lactobacillus plantarum and applied PacBio single molecule, real-time sequencing technology (SMRT) to evaluate the quality of Astragalus fermentation. We found that the production rates of acetic acid, methylacetic acid, aethyl acetic acid and lactic acid using E. faecium?+?L. plantarum were 1866.24?mg/kg on day 15, 203.80?mg/kg on day 30, 996.04?mg/kg on day 15, and 3081.99?mg/kg on day 20, respectively. Other production rates were: polysaccharides, 9.43%, 8.51%, and 7.59% on day 10; saponins, 19.6912?mg/g,…

Read More »

Sunday, September 22, 2019

The human microbiome and understanding the 16S rRNA gene in translational nursing science.

As more is understood regarding the human microbiome, it is increasingly important for nurse scientists and healthcare practitioners to analyze these microbial communities and their role in health and disease. 16S rRNA sequencing is a key methodology in identifying these bacterial populations that has recently transitioned from use primarily in research to having increased utility in clinical settings.The objectives of this review are to (a) describe 16S rRNA sequencing and its role in answering research questions important to nursing science; (b) provide an overview of the oral, lung, and gut microbiomes and relevant research; and (c) identify future implications for…

Read More »

Sunday, September 22, 2019

Extensive horizontal gene transfer in cheese-associated bacteria.

Acquisition of genes through horizontal gene transfer (HGT) allows microbes to rapidly gain new capabilities and adapt to new or changing environments. Identifying widespread HGT regions within multispecies microbiomes can pinpoint the molecular mechanisms that play key roles in microbiome assembly. We sought to identify horizontally transferred genes within a model microbiome, the cheese rind. Comparing 31 newly sequenced and 134 previously sequenced bacterial isolates from cheese rinds, we identified over 200 putative horizontally transferred genomic regions containing 4733 protein coding genes. The largest of these regions are enriched for genes involved in siderophore acquisition, and are widely distributed in…

Read More »

Sunday, September 22, 2019

Cow-to-mouse fecal transplantations suggest intestinal microbiome as one cause of mastitis.

Mastitis, which affects nearly all lactating mammals including human, is generally thought to be caused by local infection of the mammary glands. For treatment, antibiotics are commonly prescribed, which however are of concern in both treatment efficacy and neonate safety. Here, using bovine mastitis which is the most costly disease in the dairy industry as a model, we showed that intestinal microbiota alone can lead to mastitis.Fecal microbiota transplantation (FMT) from mastitis, but not healthy cows, to germ-free (GF) mice resulted in mastitis symptoms in mammary gland and inflammations in serum, spleen, and colon. Probiotic intake in parallel with FMT…

Read More »

Sunday, September 22, 2019

PCR and omics based techniques to study the diversity, ecology and biology of anaerobic fungi: Insights, challenges andopportunities.

Anaerobic fungi (phylum Neocallimastigomycota) are common inhabitants of the digestive tract of mammalian herbivores, and in the rumen, can account for up to 20% of the microbial biomass. Anaerobic fungi play a primary role in the degradation of lignocellulosic plant material. They also have a syntrophic interaction with methanogenic archaea, which increases their fiber degradation activity. To date, nine anaerobic fungal genera have been described, with further novel taxonomic groupings known to exist based on culture-independent molecular surveys. However, the true extent of their diversity may be even more extensively underestimated as anaerobic fungi continue being discovered in yet unexplored…

Read More »

Sunday, September 22, 2019

Genomics and host specialization of honey bee and bumble bee gut symbionts.

Gilliamella apicola and Snodgrassella alvi are dominant members of the honey bee (Apis spp.) and bumble bee (Bombus spp.) gut microbiota. We generated complete genomes of the type strains G. apicola wkB1(T) and S. alvi wkB2(T) (isolated from Apis), as well as draft genomes for four other strains from Bombus. G. apicola and S. alvi were found to occupy very different metabolic niches: The former is a saccharolytic fermenter, whereas the latter is an oxidizer of carboxylic acids. Together, they may form a syntrophic network for partitioning of metabolic resources. Both species possessed numerous genes [type 6 secretion systems, repeats…

Read More »

Sunday, September 22, 2019

Crosstalk between gut microbiota and Sirtuin-3 in colonic inflammation and tumorigenesis.

Colorectal cancer (CRC) is a disease involving a variety of genetic and environmental factors. Sirtuin-3 (Sirt3) is expressed at a low level in cancer tissues of CRC, but it is unclear how Sirt3 modulates colonic tumorigenesis. In this study, we found that gut microbiota play a central role in the resistance to CRC tumor formation in wild-type (WT) mice through APC (Adenomatous Polyposis Coli)-mutant mouse microbiota transfer via Wnt signaling. We also found that Sirt3-deficient mice were hypersusceptible to colonic inflammation and tumor development through altered intestinal integrity and p38 signaling, respectively. Furthermore, susceptibility to colorectal tumorigenesis was aggravated by…

Read More »

Sunday, September 22, 2019

Bacterial diversity and community structure in Chongqing radish paocai brines revealed using PacBio single-molecule real-time sequencing technology.

Traditional Chongqing radish paocai fermented with aged brine is considered to have the most intense flavor and authentic taste. Eight ‘Yanzhi’ (red, RRPB group) and ‘Chunbulao’ (white, WRPB) radish paocai brine samples were collected from Chongqing peasant households, and the diversity and community structures of bacteria present in these brines were determined using PacBio single-molecule real-time sequencing of their full-length 16S rRNA genes.In total, 30 phyla, 218 genera, and 306 species were identified from the RRPB group, with 20 phyla, 261 genera, and 420 species present in the WRPB group. Obvious differences in bacterial profiles between the RRPB and WRPB…

Read More »

Sunday, September 22, 2019

Whole genome sequencing of “Faecalibaculum rodentium” ALO17, isolated from C57BL/6J laboratory mouse feces.

Intestinal microorganisms affect host physiology, including ageing. Given the difficulty in controlling for human studies of the gut microbiome, mouse models provide an alternative avenue to study such relationships. In this study, we report on the complete genome of “Faecalibaculum rodentium” ALO17, a bacterium that was isolated from the faeces of a 9-month-old female C57BL/6J mouse. This strain will be utilized in future in vivo studies detailing the relationships between the gut microbiome and ageing.The whole genome sequence of “F. rodentium” ALO17 was obtained using single-molecule, real-time (SMRT) technique on a PacBio instrument. The assembled genome consisted of 2,542,486 base…

Read More »

1 2 3 4 5 6 8

Subscribe for blog updates:

Archives