September 22, 2019  |  

Assessment of the physicochemical properties and bacterial composition of Lactobacillus plantarum and Enterococcus faecium-fermented Astragalus membranaceus using single molecule, real-time sequencing technology.

Authors: Qiao, Hongxing and Zhang, Xiaojing and Shi, Hongtao and Song, Yuzhen and Bian, Chuanzhou and Guo, Aizhen

We investigated if fermentation with probiotic cultures could improve the production of health-promoting biological compounds in Astragalus membranaceus. We tested the probiotics Enterococcus faecium, Lactobacillus plantarum and Enterococcus faecium?+?Lactobacillus plantarum and applied PacBio single molecule, real-time sequencing technology (SMRT) to evaluate the quality of Astragalus fermentation. We found that the production rates of acetic acid, methylacetic acid, aethyl acetic acid and lactic acid using E. faecium?+?L. plantarum were 1866.24?mg/kg on day 15, 203.80?mg/kg on day 30, 996.04?mg/kg on day 15, and 3081.99?mg/kg on day 20, respectively. Other production rates were: polysaccharides, 9.43%, 8.51%, and 7.59% on day 10; saponins, 19.6912?mg/g, 21.6630?mg/g and 20.2084?mg/g on day 15; and flavonoids, 1.9032?mg/g, 2.0835?mg/g, and 1.7086?mg/g on day 20 using E. faecium, L. plantarum and E. faecium?+?L. plantarum, respectively. SMRT was used to analyze microbial composition, and we found that E. faecium and L. plantarum were the most prevalent species after fermentation for 3 days. E. faecium?+?L. plantarum gave more positive effects than single strains in the Astragalus solid state fermentation process. Our data demonstrated that the SMRT sequencing platform is applicable to quality assessment of Astragalus fermentation.

Journal: Scientific reports
DOI: 10.1038/s41598-018-30288-x
Year: 2018

Read publication

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.