Menu
July 7, 2019

Detection and genetic features of MCR-1-producing plasmid in human Escherichia coli infection in South Korea.

The plasmid-mediated colistin resistance gene, mcr-1, was identified for the first time from a hospitalized patient in South Korea. The mcr-1 gene was successfully transferred to E. coli J53 recipient and conferred resistance to colistin in the recipient. The mcr-1-harboring plasmid possessed a typical IncI2 group and did not have the mcr-1-associated ISApl1 element. Copyright © 2017 Elsevier Inc. All rights reserved.


July 7, 2019

Novel pelagic iron-oxidizing Zetaproteobacteria from the Chesapeake Bay oxic-anoxic transition zone.

Chemolithotrophic iron-oxidizing bacteria (FeOB) could theoretically inhabit any environment where Fe(II) and O2 (or nitrate) coexist. Until recently, marine Fe-oxidizing Zetaproteobacteria had primarily been observed in benthic and subsurface settings, but not redox-stratified water columns. This may be due to the challenges that a pelagic lifestyle would pose for Zetaproteobacteria, given low Fe(II) concentrations in modern marine waters and the possibility that Fe oxyhydroxide biominerals could cause cells to sink. However, we recently cultivated Zetaproteobacteria from the Chesapeake Bay oxic-anoxic transition zone, suggesting that they can survive and contribute to biogeochemical cycling in a stratified estuary. Here we describe the isolation, characterization, and genomes of two new species, Mariprofundus aestuarium CP-5 and Mariprofundus ferrinatatus CP-8, which are the first Zetaproteobacteria isolates from a pelagic environment. We looked for adaptations enabling strains CP-5 and CP-8 to overcome the challenges of living in a low Fe redoxcline with frequent O2 fluctuations due to tidal mixing. We found that the CP strains produce distinctive dreadlock-like Fe oxyhydroxide structures that are easily shed, which would help cells maintain suspension in the water column. These oxides are by-products of Fe(II) oxidation, likely catalyzed by the putative Fe(II) oxidase encoded by the cyc2 gene, present in both CP-5 and CP-8 genomes; the consistent presence of cyc2 in all microaerophilic FeOB and other FeOB genomes supports its putative role in Fe(II) oxidation. The CP strains also have two gene clusters associated with biofilm formation (Wsp system and the Widespread Colonization Island) that are absent or rare in other Zetaproteobacteria. We propose that biofilm formation enables the CP strains to attach to FeS particles and form flocs, an advantageous strategy for scavenging Fe(II) and developing low [O2] microenvironments within more oxygenated waters. However, the CP strains appear to be adapted to somewhat higher concentrations of O2, as indicated by the presence of genes encoding aa3-type cytochrome c oxidases, but not the cbb3-type found in all other Zetaproteobacteria isolate genomes. Overall, our results reveal adaptations for life in a physically dynamic, low Fe(II) water column, suggesting that niche-specific strategies can enable Zetaproteobacteria to live in any environment with Fe(II).


July 7, 2019

From isolate to answer: how whole genome sequencing is helping us rapidly characterise nosocomial bacterial outbreaks

The occurrence of highly resistant bacterial pathogens has risen in recent years, causing immense strain on the healthcare industry. Hospital-acquired infections are arguably of most concern, as bacterial outbreaks in clinical settings provide an ideal environment for proliferation among vulnerable populations. Understanding these outbreaks beyond what can be determined with traditional clinical diagnostics and implementing these new techniques routinely in the hospital environment has now become a major focus. This brief review will discuss the three main whole genome sequence techniques available today, and how they are being used to further discriminate bacterial outbreaks in nosocomial settings.


July 7, 2019

Complete genome sequence of Escherichia coli ABWA45, an rmtB-encoding wastewater isolate.

We present the complete genome sequence of Escherichia coli ABWA45, a 16S rRNA methyltransferase-producing wastewater isolate. Assembly and annotation resulted in a 5,094,639-bp circular chromosome and four closed plasmids of 145,220 bp, 113,793 bp, 57,232 bp, and 47,900 bp in size. Furthermore, a small open plasmid (7,537 bp in size) was assembled. Copyright © 2017 Zurfluh et al.


July 7, 2019

Pseudomonas aeruginosa clinical isolates in Nepal coproducing metallo-ß-lactamases and 16S rRNA methyltransferases.

A total of 11 multidrug-resistant Pseudomonas aeruginosa clinical isolates were obtained in Nepal. Four of these isolates harbored genes encoding one or more carbapenemases (DIM-1, NDM-1, and/or VIM-2), and five harbored genes encoding a 16S rRNA methyltransferase (RmtB4 or RmtF2). A novel RmtF variant, RmtF2, had a substitution (K65E) compared with the same gene in RmtF. To our knowledge, this is the first report describing carbapenemase- and 16S rRNA methyltransferase-coproducing P. aeruginosa clinical isolates in Nepal. Copyright © 2017 American Society for Microbiology.


July 7, 2019

Bacteriophages are the major drivers of Shigella flexneri serotype 1c genome plasticity: a complete genome analysis.

Shigella flexneri is the primary cause of bacillary dysentery in the developing countries. S. flexneri serotype 1c is a novel serotype, which is found to be endemic in many developing countries, but little is known about its genomic architecture and virulence signatures. We have sequenced for the first time, the complete genome of S. flexneri serotype 1c strain Y394, to provide insights into its diversity and evolution.We generated a high-quality reference genome of S. flexneri serotype 1c using the hybrid methods of long-read single-molecule real-time (SMRT) sequencing technology and short-read MiSeq (Illumina) sequencing technology. The Y394 chromosome is 4.58 Mb in size and shares the basic genomic features with other S. flexneri complete genomes. However, it possesses unique and highly modified O-antigen structure comprising of three distinct O-antigen modifying gene clusters that potentially came from three different bacteriophages. It also possesses a large number of hypothetical unique genes compared to other S. flexneri genomes.Despite a high level of structural and functional similarities of Y394 genome with other S. flexneri genomes, there are marked differences in the pathogenic islands. The diversity in the pathogenic islands suggests that these bacterial pathogens are well adapted to respond to the selection pressures during their evolution, which might contribute to the differences in their virulence potential.


July 7, 2019

Resistance to ceftazidime-avibactam is due to tranposition of KPC in a porin-deficient strain of Klebsiella pneumoniae with increased efflux activity.

Ceftazidime-avibactam is an antibiotic with activity against serine beta-lactamases, including Klebsiella pneumoniae carbapenemase (KPC). Recently, reports have emerged of KPC-producing isolates resistant to this antibiotic, including a report of a wild-type KPC-3 producing sequence type 258 Klebsiella pneumoniae that was resistant to ceftazidime-avibactam. We describe a detailed analysis of this isolate, in the context of two other closely related KPC-3 producing isolates, recovered from the same patient. Both isolates encoded a nonfunctional OmpK35, whereas we demonstrate that a novel T333N mutation in OmpK36, present in the ceftazidime-avibactam resistant isolate, reduced the activity of this porin and impacted ceftazidime-avibactam susceptibility. In addition, we demonstrate that the increased expression of blaKPC-3 and blaSHV-12 observed in the ceftazidime-avibactam-resistant isolate was due to transposition of the Tn4401 transposon harboring blaKPC-3 into a second plasmid, pIncX3, which also harbored blaSHV-12, ultimately resulting in a higher copy number of blaKPC-3 in the resistant isolate. pIncX3 plasmid from the ceftazidime-avibactam resistant isolate, conjugated into a OmpK35/36-deficient K. pneumoniae background that harbored a mutation to the ramR regulator of the acrAB efflux operon recreated the ceftazidime-avibactam-resistant MIC of 32 µg/ml, confirming that this constellation of mutations is responsible for the resistance phenotype. Copyright © 2017 American Society for Microbiology.


July 7, 2019

The biofilm inhibitor carolacton enters Gram-negative cells: studies using a TolC-deficient strain of Escherichia coli.

The myxobacterial secondary metabolite carolacton inhibits growth of Streptococcus pneumoniae and kills biofilm cells of the caries- and endocarditis-associated pathogen Streptococcus mutans at nanomolar concentrations. Here, we studied the response to carolacton of an Escherichia coli strain that lacked the outer membrane protein TolC. Whole-genome sequencing of the laboratory E. coli strain TolC revealed the integration of an insertion element, IS5, at the tolC locus and a close phylogenetic relationship to the ancient E. coli K-12. We demonstrated via transcriptome sequencing (RNA-seq) and determination of MIC values that carolacton penetrates the phospholipid bilayer of the Gram-negative cell envelope and inhibits growth of E. coli TolC at similar concentrations as for streptococci. This inhibition is completely lost for a C-9 (R) epimer of carolacton, a derivative with an inverted stereocenter at carbon atom 9 [(S) ? (R)] as the sole difference from the native molecule, which is also inactive in S. pneumoniae and S. mutans, suggesting a specific interaction of native carolacton with a conserved cellular target present in bacterial phyla as distantly related as Firmicutes and Proteobacteria. The efflux pump inhibitor (EPI) phenylalanine arginine ß-naphthylamide (PAßN), which specifically inhibits AcrAB-TolC, renders E. coli susceptible to carolacton. Our data indicate that carolacton has potential for use in antimicrobial chemotherapy against Gram-negative bacteria, as a single drug or in combination with EPIs. Strain E. coli TolC has been deposited at the DSMZ; together with the associated RNA-seq data and MIC values, it can be used as a reference during future screenings for novel bioactive compounds. IMPORTANCE The emergence of pathogens resistant against most or all of the antibiotics currently used in human therapy is a global threat, and therefore the search for antimicrobials with novel targets and modes of action is of utmost importance. The myxobacterial secondary metabolite carolacton had previously been shown to inhibit biofilm formation and growth of streptococci. Here, we investigated if carolacton could act against Gram-negative bacteria, which are difficult targets because of their double-layered cytoplasmic envelope. We found that the model organism Escherichia coli is susceptible to carolacton, similar to the Gram-positive Streptococcus pneumoniae, if its multidrug efflux system AcrAB-TolC is either inactivated genetically, by disruption of the tolC gene, or physiologically by coadministering an efflux pump inhibitor. A carolacton epimer that has a different steric configuration at carbon atom 9 is completely inactive, suggesting that carolacton may interact with the same molecular target in both Gram-positive and Gram-negative bacteria.


July 7, 2019

A nosocomial outbreak of extensively drug resistant (XDR) Acinetobacter baumannii isolates containing blaOXA-237 encoded on a plasmid.

Carbapenem antibiotics are among the mainstay for treating infections caused by Acinetobacter baumannii, especially in the Northwest United States where carbapenem resistant A. baumannii remain relatively rare. However, between June 2012 and October 2014, an outbreak of carbapenem-resistant A. baumannii occurred in 16 patients from 5 healthcare facilities in the state of Oregon. All isolates were defined as extensively-drug resistant (XDR). MLST revealed that the isolates belonged to sequence type 2 (international clone 2, IC2), and were greater than 95% similar by rep-PCR analysis. Multiplex PCR revealed the presence of a blaOXA carbapenemase gene, later identified as blaOXA-237 Whole genome sequencing of all isolates revealed a well-supported separate branch within a global A. baumannii phylogeny. Pacific Biosciences (PacBio) SMRT sequencing was also performed on one isolate to gain insight into the genetic location of the carbapenem resistance gene. We discovered that blaOXA-237, flanked on either side by ISAba1 elements in opposite orientations, was carried by a 15,198 bp plasmid designated pORAB01-3, and was present in all 16 isolates. The plasmid also contained genes encoding for: a TonB-dependent receptor, septicolysin, a type IV secretory system conjugative DNA transfer family protein, an integrase, a RepB family plasmid DNA replication initiator protein, an a/ß hydrolase, and a BrnT/BrnA type II toxin-antitoxin system. This is the first reported outbreak associated with this specific carbapenemase. Particularly worrisome is that blaOXA-237 was plasmid encoded and found in the most prominent worldwide clonal group IC2, potentially giving pORAB01-3 great capacity for future widespread dissemination. Copyright © 2017 American Society for Microbiology.


July 7, 2019

Natural product diversity associated with the nematode symbionts Photorhabdus and Xenorhabdus.

Xenorhabdus and Photorhabdus species dedicate a large amount of resources to the production of specialized metabolites derived from non-ribosomal peptide synthetase (NRPS) or polyketide synthase (PKS). Both bacteria undergo symbiosis with nematodes, which is followed by an insect pathogenic phase. So far, the molecular basis of this tripartite relationship and the exact roles that individual metabolites and metabolic pathways play have not been well understood. To close this gap, we have significantly expanded the database for comparative genomics studies in these bacteria. Clustering the genes encoded in the individual genomes into hierarchical orthologous groups reveals a high-resolution picture of functional evolution in this clade. It identifies groups of genes-many of which are involved in secondary metabolite production-that may account for the niche specificity of these bacteria. Photorhabdus and Xenorhabdus appear very similar at the DNA sequence level, which indicates their close evolutionary relationship. Yet, high-resolution mass spectrometry analyses reveal a huge chemical diversity in the two taxa. Molecular network reconstruction identified a large number of previously unidentified metabolite classes, including the xefoampeptides and tilivalline. Here, we apply genomic and metabolomic methods in a complementary manner to identify and elucidate additional classes of natural products. We also highlight the ability to rapidly and simultaneously identify potentially interesting bioactive products from NRPSs and PKSs, thereby augmenting the contribution of molecular biology techniques to the acceleration of natural product discovery.


July 7, 2019

Distinct mechanisms of acquisition of mcr-1 -bearing plasmid by Salmonella strains recovered from animals and food samples.

Since the report of its discovery in E. coli in late 2015, the plasmid-mediated colistin resistance gene, mcr-1, has been detected in various bacterial species in clinical setting and various environmental niches. However, the transmission mechanisms of this gene in Salmonella is less defined. In this study, we conducted a comprehensive study to characterize the genetic features of mcr-1-positive Salmonella strains isolated from animals and foods. Our data revealed that Salmonella recovered from animals and food specimens exhibited highly different PFGE patterns, and acquired mcr-1-encoding plasmids via different mechanism. Plasmids harboring mcr-1 in Salmonella food isolates were all conjugative and similar as plasmids reported in other species of Enterobacteriaceae, whereas mcr-1-bearing plasmids from animal Salmonella isolates were not conjugative, and belonged to the IncHI2 type. The lack of a region carrying the tra genes was found to account for the inability to undergo conjugation for various sizes of IncHI2 plasmids harbored by animal strains. These data suggest that transmission of mcr-1-positive Salmonella from animal to food might not be a common event and food isolates may have acquired mcr-1-bearing plasmids from other mcr-1-positive bacteria such as E. coli, which co-exist in food samples.


July 7, 2019

Determination of the genome and primary transcriptome of syngas fermenting Eubacterium limosum ATCC 8486.

Autotrophic conversion of CO2 to value-added biochemicals has received considerable attention as a sustainable route to replace fossil fuels. Particularly, anaerobic acetogenic bacteria are naturally capable of reducing CO2 or CO to various metabolites. To fully utilize their biosynthetic potential, an understanding of acetogenesis-related genes and their regulatory elements is required. Here, we completed the genome sequence of the syngas fermenting Eubacterium limosum ATCC 8486 and determined its transcription start sites (TSS). We constructed a 4.4?Mb long circular genome with a GC content of 47.2% and 4,090 protein encoding genes. To understand the transcriptional and translational regulation, the primary transcriptome was augmented, identifying 1,458 TSSs containing a high pyrimidine (T/C) and purine nucleotide (A/G) content at the -1 and +1 position, respectively, along with 1,253 5′-untranslated regions, and principal promoter elements such as -10 (TATAAT) and -35 (TTGACA), and Shine-Dalgarno motifs (GGAGR). Further analysis revealed 93 non-coding RNAs, including one for potential transcriptional regulation of the hydrogenase complex via interaction with molybdenum or tungsten cofactors, which in turn controls formate dehydrogenase activity of the initial step of Wood-Ljungdahl pathway. Our results provide comprehensive genomic information for strain engineering to enhance the syngas fermenting capacity of acetogenic bacteria.


July 7, 2019

Complete genome analysis of Lactobacillus fermentum SK152 from kimchi reveals genes associated with its antimicrobial activity.

Research findings on probiotics highlight their importance in repressing harmful bacteria, leading to more extensive research on their potential applications. We analysed the genome of Lactobacillus fermentum SK152, which was isolated from the Korean traditional fermented vegetable dish kimchi, to determine the genetic makeup and genetic factors responsible for the antimicrobial activity of L. fermentum SK152 and performed a comparative genome analysis with other L. fermentum strains. The genome of L. fermentum SK152 was found to comprise a complete circular chromosome of 2092 273 bp, with an estimated GC content of 51.9% and 2184 open reading frames. It consisted of 2038 protein-coding genes and 73 RNA-coding genes. Moreover, a gene encoding a putative endolysin was found. A comparative genome analysis with other L. fermentum strains showed that SK152 is closely related to L. fermentum 3872 and F-6. An evolutionary analysis identified five positively selected genes that encode proteins associated with transport, survival and stress resistance. These positively selected genes may be essential for L. fermentum to colonise and survive in the stringent environment of the human gut and exert its beneficial effects. Our findings highlight the potential benefits of SK152.© FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.


July 7, 2019

Whole-genome sequencing identification of a multidrug-resistant Salmonella enterica serovar Typhimurium strain carrying blaNDM-5 from Guangdong, China.

A carbapenem-resistant Salmonella enterica serovar Typhimurium (sequence type 34 [ST34]) strain was isolated from a fecal specimen from a child with acute diarrhea. Whole-genome sequencing revealed that the 84.5-kb IncFII plasmid pST41-NDM carrying the NDM-5 carbapenemase gene possesses a structure identical to that of the IncFII-type plasmid backbone. However, the blaNDM-5 flanking sequence found in this plasmid is identical to the blaNDM-5-positive IncX3 plasmids carried by 10 strains of Enterobacteriaceae identified in the same hospital. Copyright © 2017 Elsevier B.V. All rights reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.