X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, July 7, 2019

Complete genome sequence of a ciprofloxacin-resistant Salmonella enterica subsp. enterica serovar Kentucky sequence type 198 strain, PU131, isolated from a human patient in Washington State.

Strains of the ciprofloxacin-resistant (Cipr) Salmonella enterica subsp. enterica serovar Kentucky sequence type 198 (ST198) have rapidly and extensively disseminated globally to become a major food safety and public health concern. Here, we report the complete genome sequence of a CiprS. Kentucky ST198 strain, PU131, isolated from a human patient in Washington State (USA).

Read More »

Sunday, July 7, 2019

Whole-genome sequence of phage-resistant strain Escherichia coli DH5a.

The genomes of many strains of Escherichia coli have been sequenced, as this organism is a classic model bacterium. Here, we report the genome sequence of Escherichia coli DH5a, which is resistant to a T4 bacteriophage (CCTCC AB 2015375), while its other homologous E. coli strains, such as E. coli BL21, DH10B, and MG1655, are not resistant to phage invasions. Thus, understanding of the genome of the DH5a strain, along with comparative analysis of its genome sequence along with other sequences of E. coli strains, may help to reveal the bacteriophage resistance mechanism of E. coli. Copyright © 2018 Chen…

Read More »

Sunday, July 7, 2019

Complete genome sequence of Escherichia albertii strain 1551-2, a potential extracellular and intracellular pathogen.

Escherichia albertii has recently been recognized as an emerging human and bird enteric pathogen. Here, we report the complete chromosome sequence of a clinical isolate of E. albertii strain 1551-2, which may provide information about the pathogenic potential of this new species and the mechanisms of evolution of Escherichia species. Copyright © 2018 Romão et al.

Read More »

Sunday, July 7, 2019

Whole genome sequence and phenotypic characterization of a Cbm+ serotype e strain of Streptococcus mutans.

We report the whole genome sequence of the serotype e Cbm+ strain LAR01 of Streptococcus mutans, a dental pathogen frequently associated with extra-oral infections. The LAR01 genome is a single circular chromosome of 2.1 Mb with a GC content of 36.96%. The genome contains 15 phosphotransferase system gene clusters, seven cell wall-anchored (LPxTG) proteins, all genes required for the development of natural competence and genes coding for mutacins VI and K8. Interestingly, the cbm gene is genetically linked to a putative type VII secretion system that has been found in Mycobacteria and few other Gram-positive bacteria. When compared with the UA159…

Read More »

Sunday, July 7, 2019

Complete genome sequence of Escherichia coli AS19, an antibiotic-sensitive variant of E. coli strain B REL606.

The chemically mutagenized Escherichia coli strain AS19 was isolated on the basis of its enhanced sensitivity to different antibiotics, in particular to actinomycin. The strain was later modified to study rRNA modifications that confer antibiotic resistance. Here, we present the genome sequence of the variant E. coli AS19-RrmA. Copyright © 2018 Avalos et al.

Read More »

Sunday, July 7, 2019

Complete genome sequence of Staphylococcus haemolyticus type strain SGAir0252.

Staphylococcus haemolyticus is a coagulase-negative staphylococcal species that is part of the skin microbiome and an opportunistic human pathogen. The strain SGAir0252 was isolated from tropical air samples collected in Singapore, and its complete genome comprises one chromosome of 2.63?Mb and one plasmid of 41.6?kb. Copyright © 2018 Premkrishnan et al.

Read More »

Sunday, July 7, 2019

First detection of a blaCTX-M-15-carrying plasmid in Vibrio alginolyticus.

Vibrio alginolyticus is a gram-negative halophilic bacterium, widely distributed in sea-water and seafood all over the world and is the main pathogenic bacteria of marine animals such as fish, shrimp and shellfish. Besides, it is also an important human pathogen causing eye, ear and wound infections, as well as gastroenteritis, septicemia, and necrotizing fasciitis [1]. Resistance to extended-spectrum cephalosporins is rarely ob- served in V. alginolyticus. Here, we report for the first time the identification of a foodborne V. alginolyticus strain Vb0506 carrying plasmid encoding blaCTX-M-15.

Read More »

Sunday, July 7, 2019

Short genome report of cellulose-producing commensal Escherichia coli 1094.

Bacterial surface colonization and biofilm formation often rely on the production of an extracellular polymeric matrix that mediates cell-cell and cell-surface contacts. In Escherichia coli and many Betaproteobacteria and Gammaproteobacteria cellulose is often the main component of the extracellular matrix. Here we report the complete genome sequence of the cellulose producing strain E. coli 1094 and compare it with five other closely related genomes within E. coli phylogenetic group A. We present a comparative analysis of the regions encoding genes responsible for cellulose biosynthesis and discuss the changes that could have led to the loss of this important adaptive advantage…

Read More »

Sunday, July 7, 2019

Complete and assembled genome sequence of an NDM-9- and CTX-M-15-producing Klebsiella pneumoniae ST147 wastewater isolate from Switzerland.

Carbapenem-resistant Klebsiella pneumoniae have emerged worldwide and represent a major threat to human health. Here we report the genome sequence of K. pneumoniae 002SK2, an NDM-9- and CTX-M-15-producing strain isolated from wastewater in Switzerland and belonging to the international high-risk clone sequence type 147 (ST147).Whole-genome sequencing of K. pneumoniae 002SK2 was performed using Pacific Biosciences (PacBio) single-molecule, real-time (SMRT) technology RS2 reads (C4/P6 chemistry). De novo assembly was performed using Canu assembler, and sequences were annotated using the NCBI Prokaryotic Genome Annotation Pipeline (PGAP).The genome of K. pneumoniae 002SK2 consists of a 5.4-Mbp chromosome containing blaSHV-11 and fosA6, a 159-kb…

Read More »

Sunday, July 7, 2019

Genome sequences of Shewanella baltica and Shewanella morhuae strains isolated from the gastrointestinal tract of freshwater fish.

We present here the genome sequences of Shewanella baltica strain CW2 and Shewanella morhuae strain CW7, isolated from the gastrointestinal tract of Salvelinus namaycush (lean lake trout) and Coregonus clupeaformis (whitefish), respectively. These genome sequences provide insights into the niche adaptation of these specific species in freshwater systems. Copyright © 2018 Castillo et al.

Read More »

Sunday, July 7, 2019

Analysis of resistance genes of clinical Pannonibacter phragmitetus strain 31801 by complete genome sequencing.

To clarify the resistance mechanisms of Pannonibacter phragmitetus 31801, isolated from the blood of a liver abscess patient, at the genomic level, we performed whole genomic sequencing using a PacBio RS II single-molecule real-time long-read sequencer. Bioinformatic analysis of the resulting sequence was then carried out to identify any possible resistance genes. Analyses included Basic Local Alignment Search Tool searches against the Antibiotic Resistance Genes Database, ResFinder analysis of the genome sequence, and Resistance Gene Identifier analysis within the Comprehensive Antibiotic Resistance Database. Prophages, clustered regularly interspaced short palindromic repeats (CRISPR), and other putative virulence factors were also identified using…

Read More »

1 55 56 57 58

Subscribe for blog updates:

Archives