Menu
September 22, 2019

Unrestrained markerless trait stacking in Nannochloropsis gaditana through combined genome editing and marker recycling technologies.

Robust molecular tool kits in model and industrial microalgae are key to efficient targeted manipulation of endogenous and foreign genes in the nuclear genome for basic research and, as importantly, for the development of algal strains to produce renewable products such as biofuels. While Cas9-mediated gene knockout has been demonstrated in a small number of algal species with varying efficiency, the ability to stack traits or generate knockout mutations in two or more loci are often severely limited by selectable agent availability. This poses a critical hurdle in developing production strains, which require stacking of multiple traits, or in probing functionally redundant gene families. Here, we combine Cas9 genome editing with an inducible Cre recombinase in the industrial alga Nannochloropsis gaditana to generate a strain, NgCas9+Cre+, in which the potentially unlimited stacking of knockouts and addition of new genes is readily achievable. Cre-mediated marker recycling is first demonstrated in the removal of the selectable marker and GFP reporter transgenes associated with the Cas9/Cre construct in NgCas9+Cre+ Next, we show the proof-of-concept generation of a markerless knockout in a gene encoding an acyl-CoA oxidase (Aco1), as well as the markerless recapitulation of a 2-kb insert in the ZnCys gene 5′-UTR, which results in a doubling of wild-type lipid productivity. Finally, through an industrially oriented process, we generate mutants that exhibit up to ~50% reduction in photosynthetic antennae size by markerless knockout of seven genes in the large light-harvesting complex gene family. Copyright © 2018 the Author(s). Published by PNAS.


September 22, 2019

Genomic variation among and within six Juglans species.

Genomic analysis in Juglans (walnuts) is expected to transform the breeding and agricultural production of both nuts and lumber. To that end, we report here the determination of reference sequences for six additional relatives of Juglans regia: Juglans sigillata (also from section Dioscaryon), Juglans nigra, Juglans microcarpa, Juglans hindsii (from section Rhysocaryon), Juglans cathayensis (from section Cardiocaryon), and the closely related Pterocarya stenoptera While these are ‘draft’ genomes, ranging in size between 640Mbp and 990Mbp, their contiguities and accuracies can support powerful annotations of genomic variation that are often the foundation of new avenues of research and breeding. We annotated nucleotide divergence and synteny by creating complete pairwise alignments of each reference genome to the remaining six. In addition, we have re-sequenced a sample of accessions from four Juglans species (including regia). The variation discovered in these surveys comprises a critical resource for experimentation and breeding, as well as a solid complementary annotation. To demonstrate the potential of these resources the structural and sequence variation in and around the polyphenol oxidase loci, PPO1 and PPO2 were investigated. As reported for other seed crops variation in this gene is implicated in the domestication of walnuts. The apparently Juglandaceae specific PPO1 duplicate shows accelerated divergence and an excess of amino acid replacement on the lineage leading to accessions of the domesticated nut crop species, Juglans regia and sigillata. Copyright © 2018 Stevens et al.


September 22, 2019

Horizontal transfer of BovB and L1 retrotransposons in eukaryotes.

Transposable elements (TEs) are mobile DNA sequences, colloquially known as jumping genes because of their ability to replicate to new genomic locations. TEs can jump between organisms or species when given a vector of transfer, such as a tick or virus, in a process known as horizontal transfer. Here, we propose that LINE-1 (L1) and Bovine-B (BovB), the two most abundant TE families in mammals, were initially introduced as foreign DNA via ancient horizontal transfer events.Using analyses of 759 plant, fungal and animal genomes, we identify multiple possible L1 horizontal transfer events in eukaryotic species, primarily involving Tx-like L1s in marine eukaryotes. We also extend the BovB paradigm by increasing the number of estimated transfer events compared to previous studies, finding new parasite vectors of transfer such as bed bug, leech and locust, and BovB occurrences in new lineages such as bat and frog. Given that these transposable elements have colonised more than half of the genome sequence in today’s mammals, our results support a role for horizontal transfer in causing long-term genomic change in new host organisms.We describe extensive horizontal transfer of BovB retrotransposons and provide the first evidence that L1 elements can also undergo horizontal transfer. With the advancement of genome sequencing technologies and bioinformatics tools, we anticipate our study to be a valuable resource for inferring horizontal transfer from large-scale genomic data.


September 22, 2019

Genomic comparison of highly virulent, moderately virulent, and avirulent strains from a genetically closely-related MRSA ST239 sub-lineage provides insights into pathogenesis.

The genomic comparison of virulent (TW20), moderately virulent (CMRSA6/CMRSA3), and avirulent (M92) strains from a genetically closely-related MRSA ST239 sub-lineage revealed striking similarities in their genomes and antibiotic resistance profiles, despite differences in virulence and pathogenicity. The main differences were in the spa gene (coding for staphylococcal protein A), lpl genes (coding for lipoprotein-like membrane proteins), cta genes (genes involved in heme synthesis), and the dfrG gene (coding for a trimethoprim-resistant dihydrofolate reductase), as well as variations in the presence or content of some prophages and plasmids, which could explain the virulence differences of these strains. TW20 was positive for all genetic traits tested, compared to CMRSA6, CMRSA3, and M92. The major components differing among these strains included spa and lpl with TW20 carrying both whereas CMRSA6/CMRSA3 carry spa identical to TW20 but have a disrupted lpl. M92 is devoid of both these traits. Considering the role played by these components in innate immunity and virulence, it is predicted that since TW20 has both the components intact and functional, these traits contribute to its pathogenesis. However, CMRSA6/CMRSA3 are missing one of these components, hence their intermediately virulent nature. On the contrary, M92 is completely devoid of both the spa and lpl genes and is avirulent. Mobile genetic elements play a potential role in virulence. TW20 carries three prophages (?Sa6, ?Sa3, and ?SPß-like), a pathogenicity island and two plasmids. CMRSA6, CMRSA3, and M92 contain variations in one or more of these components. The virulence associated genes in these components include staphylokinase, entertoxins, antibiotic/antiseptic/heavy metal resistance and bacterial persistence. Additionally, there are many hypothetical proteins (present with variations among strains) with unknown function in these mobile elements which could be making an important contribution in the virulence of these strains. The above mentioned repertoire of virulence components in TW20 likely contributes to its increased virulence, while the absence and/or modification of one or more of these components in CMRSA6/CMRSA3 and M92 likely affects the virulence of the strains.


September 22, 2019

Genetic adaptation of a mevalonate pathway deficient mutant in Staphylococcus aureus.

In this study we addressed the question how a mevalonate (MVA)-auxotrophic Staphylococcus aureus?mvaS mutant can revert to prototrophy. This mutant couldn’t grow in the absence of MVA. However, after a long lag-phase of 4-6 days the mutant adapted from auxotrophic to prototrophic phenotype. During that time, it acquired two point mutations: One mutation in the coding region of the regulator gene spx, which resulted in an amino acid exchange that decreased Spx function. The other mutation in the upstream-element within the core-promoter of the mevalonolactone lactonase gene drp35. This mutation led to an increased expression of drp35. In repeated experiments the mutations always occurred in spx and drp35 and in the same order. The first detectable mutation appeared in spx and allowed slight growth; the second mutation, in drp35, increased growth further. Phenotypical characterizations of the mutant showed that small amounts of the lipid-carrier undecaprenol are synthesized, despite the lack of mvaS. The growth of the adapted clone, ?mvaSad, indicates that the mutations reawake a rescue bypass. We think that this bypass enters the MVA pathway at the stage of MVA, because blocking the pathway downstream of MVA led to growth arrest of the mutant. In addition, the lactonase Drp35 is able to convert mevalonolactone to MVA. Summarized, we describe here a mutation-based two-step adaptation process that allows resuscitation of growth of the ?mvaS mutant.


September 22, 2019

The genome assembly of the fungal pathogen Pyrenochaeta lycopersici from Single-Molecule Real-Time sequencing sheds new light on its biological complexity.

The first draft genome sequencing of the non-model fungal pathogen Pyrenochaeta lycopersici showed an expansion of gene families associated with heterokaryon incompatibility and lacking of mating-type genes, providing insights into the genetic basis of this “imperfect” fungus which lost the ability to produce the sexual stage. However, due to the Illumina short-read technology, the draft genome was too fragmented to allow a comprehensive characterization of the genome, especially of the repetitive sequence fraction. In this work, the sequencing of another P. lycopersici isolate using long-read Single Molecule Real-Time sequencing technology was performed with the aim of obtaining a gapless genome. Indeed, a gapless genome assembly of 62.7 Mb was obtained, with a fraction of repetitive sequences representing 30% of the total bases. The gene content of the two P. lycopersici isolates was very similar, and the large difference in genome size (about 8 Mb) might be attributable to the high fraction of repetitive sequences detected for the new sequenced isolate. The role of repetitive elements, including transposable elements, in modulating virulence effectors is well established in fungal plant pathogens. Moreover, transposable elements are of fundamental importance in creating and re-modelling genes, especially in imperfect fungi. Their abundance in P. lycopersici, together with the large expansion of heterokaryon incompatibility genes in both sequenced isolates, suggest the presence of possible mechanisms alternative to gene re-assorting mediated by sexual recombination. A quite large fraction (~9%) of repetitive elements in P. lycopersici, has no homology with known classes, strengthening this hypothesis. The availability of a gapless genome of P. lycopersici allowed the in-depth analysis of its genome content, by annotating functional genes and TEs. This goal will be an important resource for shedding light on the evolution of the reproductive and pathogenic behaviour of this soilborne pathogen and the onset of a possible speciation within this species.


September 22, 2019

Genome mining-mediated discovery of a new avermipeptin analogue in Streptomyces actuosus ATCC 25421.

Streptomyces actuosus ATCC 25421 was famous for producing thiopeptide nosiheptide, which has widely been used as a feed additive for the promotion of animal growth. Herein, we report the complete genome sequence of S. actuosus ATCC 25421, which consists of an 8,145,579-bp circular chromosome with a G+C content of 72.53?% containing 7?536 protein-coding genes. The antiSMASH 3.0 program was used to identify 49 biosynthetic gene clusters for putative secondary metabolites, including a putative lantipeptide gene cluster that showed 85?% similarity to the reported informatipeptin biosynthetic gene cluster, indicating that the putative lantipeptide gene cluster has the ability to generate the informatipeptin analogue. Compared with avermipeptin, the lantipeptide precursor peptide (termed avermipeptin B) from S. actuosus ATCC 25421 contains a 14-aa leader peptide and a 24-aa core peptide, in which Ile15 was different from Val15 in avermipeptin. We also deduced the structure and the biosynthetic mechanism of avermipeptin B. Heterologous expression of the avermipeptin B biosynthetic gene cluster in S. lividans TK24 was characterized by high-resolution mass spectrometry (ESI-MS/MS). Finally, we found that avermipeptin B displayed strong activity against Gram-positive strains. The genome sequence reported here can encourage us to mine novel secondary metabolites and investigate their biosynthetic mechanism in the future.


September 22, 2019

Complete genome sequencing and comparative genomic analysis of Helicobacter apodemus isolated from the wild Korean striped field mouse (Apodemus agrarius) for potential pathogenicity

The Helicobacter bacterial genus comprises of spiral-shaped gram-negative bacteria with flagella that colonize the gastro-intestinal (GI) tract of humans and various mammals (Solnick and Schauer, 2001). In particular, Helicobacter pylori was classified as a group 1 carcinogen by the International Agency for Research on Cancer (IARC) in 1994, and has been shown to occur with a high prevalence in humans, although this varies between geographical regions, ethnic groups, and various populations (Kusters et al., 2006; Goh et al., 2011). To date, more than 37 Helicobacter species have been identified in addition to H. pylori (Péré-Védrenne et al., 2017). Furthermore, non-H. pylori Helicobacters (NHPH) have been shown to infect both humans and animals, and NHPH infections are associated with intestinal carcinoma, and mucinous adenocarcinoma (Swennes et al., 2016). Despite the demonstrated association between NHPH and disease, most studies to date have investigated H. pylori in humans; thus, it is necessary to characterize NHPH and elucidate its role in the GI tract of wild rodents which are potential Helicobacter carriers (Taylor et al., 2007; Mladenova-Hristova et al., 2017).


September 22, 2019

Comparing two Mycobacterium tuberculosis genomes from Chinese immigrants with native genomes using mauve alignments.

The number of immigrants with tuberculosis (TB) increases each year in South Korea. Determining the transmission dynamics based on whole genome sequencing (WGS) to cluster the strains has been challenging.WGS, annotation refinement, and orthology assignment for the GenBank accession number acquisition were performed on two clinical isolates from Chinese immigrants. In addition, the genomes of the two isolates were compared with the genomes of Mycobacterium tuberculosis isolates, from two native Korean and five native Chinese individuals using a phylogenetic topology tree based on the Multiple Alignment of Conserved Genomic Sequence with Rearrangements (Mauve) package.The newly assigned accession numbers for two clinical isolates were CP020381.2 (a Korean-Chinese from Yanbian Province) and CP022014.1 (a Chinese from Shandong Province), respectively. Mauve alignment classified all nine TB isolates into a discriminative collinear set with matched regions. The phylogenetic analysis revealed a rooted phylogenetic tree grouping the nine strains into two lineages: strains from Chinese individuals and strains from Korean individuals.Phylogenetic trees based on the Mauve alignments were supposed to be useful in revealing the dynamics of TB transmission from immigrants in South Korea, which can provide valuable information for scaling up the TB screening policy for immigrants. Copyright©2018. The Korean Academy of Tuberculosis and Respiratory Diseases.


September 22, 2019

Comparative genomic analysis of Bacillus thuringiensis reveals molecular adaptation to copper tolerance

Bacillus thuringiensis is a type of Gram positive and rod shaped bacterium that is found in a wide range of habitats. Despite the intensive studies conducted on this bacterium, most of the information available are related to its pathogenic characteristics, with only a limited number of publications mentioning its ability to survive in extreme environments. Recently, a B. thuringiensis MCMY1 strain was successfully isolated from a copper contaminated site in Mamut Copper Mine, Sabah. This study aimed to conduct a comparative genomic analysis by using the genome sequence of MCMY1 strain published in GenBank (PRJNA374601) as a target genome for comparison with other available B. thuringiensis genomes at the GenBank. Whole genome alignment, Fragment all-against-all comparison analysis, phylogenetic reconstruction and specific copper genes comparison were applied to all forty-five B. thuringiensis genomes to reveal the molecular adaptation to copper tolerance. The comparative results indicated that B. thuringiensis MCMY1 strain is closely related to strain Bt407 and strain IS5056. This strain harbors almost all available copper genes annotated from the forty-five B. thuringiensis genomes, except for the gene for Magnesium and cobalt efflux protein (CorC) which plays an indirect role in reducing the oxidative stress that caused by copper and other metal ions. Furthermore, the findings also showed that the Copper resistance gene family, CopABCDZ and its repressor (CsoR) are conserved in almost all sequenced genomes but the presence of the genes for Cytoplasmic copper homeostasis protein (CutC) and CorC across the sample genomes are highly inconsonant. The variation of these genes across the B. thuringiensis genomes suggests that each strain may have adapted to their specific ecological niche. However, further investigations will be need to support this preliminary hypothesis.


September 22, 2019

Genomic characterization of extensively drug-resistant Acinetobacter baumannii strain, KAB03 belonging to ST451 from Korea.

Extensively drug-resistant (XDR) Acinetobacter baumannii strains have emerged rapidly worldwide. The antibiotic resistance characteristics of XDR A. baumannii strains show regional differences; therefore, it is necessary to analyze both genomic and proteomic characteristics of emerging XDR A. baumannii clinical strains isolated in Korea to elucidate their multidrug resistance. Here, we isolated new sequence type of XDR A. baumannii clinical strain (KAB03) from Korean hospitals and performed comprehensive genome analyses. The strain belongs to new sequence type, ST451. Single nucleotide polymorphism (SNP) analysis with other types of A. baumannii strains revealed that KAB03 has unique SNP pattern in the regions of gyrB and gpi of MLST profiles. A. baumannii KAB03 harbours three antibiotic resistance islands (AbGRI1, 2, and 3). AbGRI1 harbours two copies of Tn2006 containing blaOXA-23, which play an important role in antibiotic resistance. AbGRI2 possesses aminoglycoside resistant gene aph(3′)-Ic and class A ß-lactamase blaTEM. AbGIR3 has macrolide resistant genes and aminoglycoside resistant gene armA. A. baumannii KAB03 harbours mutations in pmrB and pmrC, which are believed to confer colistin resistance. In addition, proteomic and transcriptional analysis of KAB03 confirmed that ß-lactamases (ADC-73 and OXA-23), Ade efflux pumps (AdeIJK), outer membrane proteins (OmpA and OmpW), and colistin resistance genes (PmrCAB) were major proteins responsible for antibiotic resistance. Our proteogenomic results provide valuable information for multi-drug resistance in emerging XDR A. baumannii strains belonging to ST451. Copyright © 2018. Published by Elsevier B.V.


September 22, 2019

Draft genome sequence of an NDM-1-, OXA-421- and AmpC-producing Acinetobacter pittii ST220 in Anhui Province, China.

Acinetobacter pittii carrying the blaNDM-1 gene is frequently reported in the world recently, however most of the blaNDM-1 genes are located on plasmids. Here we report a multidrug-resistant (MDR) A. pittii isolated in China co-harbouring blaNDM-1, blaOXA-421 and blaAmpC in the genome.Bacterial genomic DNA was extracted using the cetyl trimethylammonium bromide (CTAB) method. Whole-genome sequencing of A. pittii was performed using an Illumina MiSeq system (2×251bp) in combination with PacBio single-molecule real-time (SMRT) sequencing. De novo genome assembly was performed using SPAdes v.3.9.0, A5-miseq v.20150522 and Canu v.1.4, respectively. The genome sequence was analysed by bioinformatics methods.The 4211131-bp genome with 38.99% G+C content displayed several resistance genes, including blaNDM-1, blaOXA-421 and blaAmpC. Meanwhile, 4426 protein-coding sequences were predicted within the genome.The genome sequence reported here can be compared with the already published genomes of NDM-1-producing isolates. These data might facilitate further understanding of the specific genomic feature of MDR A. pittii in China. Copyright © 2018 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.


September 22, 2019

The Chara genome: Secondary complexity and implications for plant terrestrialization.

Land plants evolved from charophytic algae, among which Charophyceae possess the most complex body plans. We present the genome of Chara braunii; comparison of the genome to those of land plants identified evolutionary novelties for plant terrestrialization and land plant heritage genes. C. braunii employs unique xylan synthases for cell wall biosynthesis, a phragmoplast (cell separation) mechanism similar to that of land plants, and many phytohormones. C. braunii plastids are controlled via land-plant-like retrograde signaling, and transcriptional regulation is more elaborate than in other algae. The morphological complexity of this organism may result from expanded gene families, with three cases of particular note: genes effecting tolerance to reactive oxygen species (ROS), LysM receptor-like kinases, and transcription factors (TFs). Transcriptomic analysis of sexual reproductive structures reveals intricate control by TFs, activity of the ROS gene network, and the ancestral use of plant-like storage and stress protection proteins in the zygote. Copyright © 2018 Elsevier Inc. All rights reserved.


September 22, 2019

Genome survey of the freshwater mussel Venustaconcha ellipsiformis (Bivalvia: Unionida) using a hybrid de novo assembly approach.

Freshwater mussels (Bivalvia: Unionida) serve an important role as aquatic ecosystem engineers but are one of the most critically imperilled groups of animals. Here, we used a combination of sequencing strategies to assemble and annotate a draft genome of Venustaconcha ellipsiformis, which will serve as a valuable genomic resource given the ecological value and unique “doubly uniparental inheritance” mode of mitochondrial DNA transmission of freshwater mussels. The genome described here was obtained by combining high-coverage short reads (65× genome coverage of Illumina paired-end and 11× genome coverage of mate-pairs sequences) with low-coverage Pacific Biosciences long reads (0.3× genome coverage). Briefly, the final scaffold assembly accounted for a total size of 1.54?Gb (366,926 scaffolds, N50?=?6.5 kb, with 2.3% of “N” nucleotides), representing 86% of the predicted genome size of 1.80?Gb, while over one third of the genome (37.5%) consisted of repeated elements and >85% of the core eukaryotic genes were recovered. Given the repeated genetic bottlenecks of V. ellipsiformis populations as a result of glaciations events, heterozygosity was also found to be remarkably low (0.6%), in contrast to most other sequenced bivalve species. Finally, we reassembled the full mitochondrial genome and found six polymorphic sites with respect to the previously published reference. This resource opens the way to comparative genomics studies to identify genes related to the unique adaptations of freshwater mussels and their distinctive mitochondrial inheritance mechanism.


September 22, 2019

Using XCAVATOR and EXCAVATOR2 to Identify CNVs from WGS, WES, and TS Data.

Copy Number Variants (CNVs) are structural rearrangements contributing to phenotypic variation but also associated with many disease states. In recent years, the identification of CNVs from high-throughput sequencing experiments has become a common practice for both research and clinical purposes. Several computational methods have been developed so far. In this unit, we describe and give instructions on how to run two read count-based tools, XCAVATOR and EXCAVATOR2, which are tailored for the detection of both germline and somatic CNVs from different sequencing experiments (whole-genome, whole-exome, and targeted) in various disease contexts and population genetic studies. © 2018 by John Wiley & Sons, Inc.© 2018 John Wiley & Sons, Inc.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.