September 22, 2019  |  

Comparative genomic analysis of Bacillus thuringiensis reveals molecular adaptation to copper tolerance

Authors: Low, Yi Yik and Chin, Grace Joy Wei Lie and Joseph, Collin Glen and Rodrigues, Kenneth Francis

Bacillus thuringiensis is a type of Gram positive and rod shaped bacterium that is found in a wide range of habitats. Despite the intensive studies conducted on this bacterium, most of the information available are related to its pathogenic characteristics, with only a limited number of publications mentioning its ability to survive in extreme environments. Recently, a B. thuringiensis MCMY1 strain was successfully isolated from a copper contaminated site in Mamut Copper Mine, Sabah. This study aimed to conduct a comparative genomic analysis by using the genome sequence of MCMY1 strain published in GenBank (PRJNA374601) as a target genome for comparison with other available B. thuringiensis genomes at the GenBank. Whole genome alignment, Fragment all-against-all comparison analysis, phylogenetic reconstruction and specific copper genes comparison were applied to all forty-five B. thuringiensis genomes to reveal the molecular adaptation to copper tolerance. The comparative results indicated that B. thuringiensis MCMY1 strain is closely related to strain Bt407 and strain IS5056. This strain harbors almost all available copper genes annotated from the forty-five B. thuringiensis genomes, except for the gene for Magnesium and cobalt efflux protein (CorC) which plays an indirect role in reducing the oxidative stress that caused by copper and other metal ions. Furthermore, the findings also showed that the Copper resistance gene family, CopABCDZ and its repressor (CsoR) are conserved in almost all sequenced genomes but the presence of the genes for Cytoplasmic copper homeostasis protein (CutC) and CorC across the sample genomes are highly inconsonant. The variation of these genes across the B. thuringiensis genomes suggests that each strain may have adapted to their specific ecological niche. However, further investigations will be need to support this preliminary hypothesis.

Journal: BioRxiv
DOI: 10.1101/360354
Year: 2018

Read publication

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.