Menu
July 7, 2019

Dissemination of the mcr-1 colistin resistance gene.

Since our first report on plasmid- mediated colistin resistance gene mcr-1,1 strains previously collected in seven countries (Denmark, the Netherlands, Laos, Nigeria, Thailand, France, and the UK) have been found to carry mcr-1.2–6 Furthermore, the sequences in GenBank show that mcr-1 might also be circulating in Portugal and Malaysia. The earliest mcr-1- positive strain was collected from cattle in France in 2008 (GenBank accession number LMBK01000308). These findings confirm our initial concern that mcr-1 could have already disseminated worldwide.


July 7, 2019

Complete genome sequence of Rufibacter sp. DG31D, a bacterium resistant to gamma and UV radiation toxicity

The ionizing radiation toxicity becomes a major concern for the modern world, recent years, several special interest has been given to the research for the radiation resistant and the mechanisms of which the radiation resistant bacteria survive after the irradiation. In the current study, we have isolated strain DG31D was isolated from gamma ray-irradiated soil sample and showed resistant to gamma and UV radiation. The aim of this study is to understanding the radiation resistant mechanisms and their genomic features of the strain DG31D, which can be potentially used for the biotechnological application to degrade harmful soil contamination near the nuclear power stations and other radiation-affected areas. Strain DG31D showed resistant to UV and gamma radiation with D10 value of 10 kGy. The genome comprised of 4,820,793 bp with the G+C content of 51.4%. It contains the genomic features of enzymes involved in the nucleotide excision repair (NER) pathway that protect the damaged DNA.


July 7, 2019

Gene duplication confers enhanced expression of 27-kDa ?-zein for endosperm modification in quality protein maize.

The maizeopaque2(o2) mutant has a high nutritional value but it develops a chalky endosperm that limits its practical use. Genetic selection foro2modifiers can convert the normally chalky endosperm of the mutant into a hard, vitreous phenotype, yielding what is known as quality protein maize (QPM). Previous studies have shown that enhanced expression of 27-kDa ?-zein in QPM is essential for endosperm modification. Taking advantage of genome-wide association study analysis of a natural population, linkage mapping analysis of a recombinant inbred line population, and map-based cloning, we identified a quantitative trait locus (q?27) affecting expression of 27-kDa ?-zein.q?27was mapped to the same region as the majoro2 modifier(o2 modifier1) on chromosome 7 near the 27-kDa ?-zein locus.q?27resulted from a 15.26-kb duplication at the 27-kDa ?-zein locus, which increases the level of gene expression. This duplication occurred before maize domestication; however, the gene structure ofq?27appears to be unstable and the DNA rearrangement frequently occurs at this locus. Because enhanced expression of 27-kDa ?-zein is critical for endosperm modification in QPM,q?27is expected to be under artificial selection. This discovery provides a useful molecular marker that can be used to accelerate QPM breeding.


July 7, 2019

Genome sequencing and analysis of the first complete genome of Lactobacillus kunkeei strain MP2, an Apis mellifera gut isolate

Background. The honey bee (Apis mellifera) is the most important pollinator in agriculture worldwide. However, the number of honey bees has fallen significantly since 2006, becoming a huge ecological problem nowadays. The principal cause is CCD, or Colony Collapse Disorder, characterized by the seemingly spontaneous abandonment of hives by their workers. One of the characteristics of CCD in honey bees is the alteration of the bacterial communities in their gastrointestinal tract, mainly due to the decrease of Firmicutes populations, such as the Lactobacilli. At this time, the causes of these alterations remain unknown. We recently isolated a strain of Lactobacillus kunkeei (L. kunkeei strain MP2) from the gut of Chilean honey bees. L. kunkeei, is one of the most commonly isolated bacterium from the honey bee gut and is highly versatile in different ecological niches. In this study, we aimed to elucidate in detail, the L. kunkeei genetic background and perform a comparative genome analysis with other Lactobacillus species. Methods. L. kunkeei MP2 was originally isolated from the guts of Chilean A. mellifera individuals. Genome sequencing was done using Pacific Biosciences single-molecule real-time sequencing technology. De novo assembly was performed using Celera assembler. The genome was annotated using Prokka, and functional information was added using the EggNOG 3.1 database. In addition, genomic islands were predicted using IslandViewer, and pro-phage sequences using PHAST. Comparisons between L. kunkeei MP2 with other L. kunkeei, and Lactobacillus strains were done using Roary. Results. The complete genome of L. kunkeei MP2 comprises one circular chromosome of 1,614,522 nt. with a GC content of 36,9%. Pangenome analysis with 16 L. kunkeei strains, identified 113 unique genes, most of them related to phage insertions. A large and unique region of L. kunkeei MP2 genome contains several genes that encode for phage structural protein and replication components. Comparative analysis of MP2 with other Lactobacillus species, identified several unique genes of L. kunkeei MP2 related with metabolism, biofilm generation, survival under stress conditions, and mobile genetic elements (MGEs). Discussion. The presence of multiple mobile genetic elements, including phage sequences, suggest a high degree of genetic variability in L. kunkeei. Its versatility and ability to survive in different ecological niches (bee guts, flowers, fruits among others) could be given by its genetic capacity to change and adapt to different environments. L. kunkeei could be a new source of Lactobacillus with beneficial properties. Indeed, L. kunkeei MP2 could play an important role in honey bee nutrition through the synthesis of components as isoprenoids.


July 7, 2019

Single-molecule sequencing assists genome assembly improvement and structural variation inference.

Dear editor, The single-molecule real-time (SMRT) sequencing platform presented by Pacific Biosciences (PacBio) is regarded as a third-generation sequencing technology (Eid et al., 2009, Roberts et al., 2013). PacBio delivers long reads from several to tens of kilobases (kbs), which are ideal for filling unsequenced gaps due to unusual sequence contexts, such as high-GC content or repeat-rich regions (Bashir et al., 2012, Berlin et al., 2015, Chaisson et al., 2015). PacBio long reads are also favorable for detecting large DNA fragments harboring structural variations (SVs), such as inversions, translocations, duplications, and large insertions/deletions (indels) (Ritz et al., 2010, English et al., 2014). However, one drawback of PacBio is the high error rate of base calling for single pass coverage of the genome (Au et al., 2012, Koren et al., 2012). This drawback can be mitigated by increasing sequencing coverage to achieve high consensus accuracy, but the requirements may be prohibitive for the de novo assembly of large- or medium-size genomes using only PacBio when considering both budgetary and computational costs. Alternatively, PacBio may be used for assembly improvement of near-finished reference genomes, especially for filling gaps in which unsequenced bases are represented by the letter N (English et al., 2012). Here, we combined PacBio (~15x) with Illumina reads (~40x) to improve the genome assemblies of African wild (Oryza barthii) and cultivated rice (O. glaberrima), and to infer large SVs between O. barthii and O. glaberrima.


July 7, 2019

Complete genome sequence of a low-temperature active and alkaline-stable endoglucanase-producing Paenibacillus sp. strain IHB B 3084 from the Indian Trans-Himalayas.

A genome of 5.88Mb with 46.83% G+C content is reported for an endoglucanase-producing bacterium Paenibacillus sp. strain IHB B 3084 isolated from the cold environments of the Indian Trans-Himalayas. The psychrotrophic bacterium produces low-temperature active and alkaline-stable endoglucanases of industrial importance. The genomic data has provided insight into genomic basis of cellulase production and survival of the bacterium in the cold environments. Copyright © 2016. Published by Elsevier B.V.


July 7, 2019

Haemonchus contortus: genome structure, organization and comparative genomics

One of the first genome sequencing projects for a parasitic nematode was that for Haemonchus contortus. The open access data from the Wellcome Trust Sanger Institute provided a valuable early resource for the research community, particularly for the identification of specific genes and genetic markers. Later, a second sequencing project was initiated by the University of Melbourne, and the two draft genome sequences for H. contortus were published back-to-back in 2013. There is a pressing need for long-range genomic information for genetic mapping, population genetics and functional genomic studies, so we are continuing to improve the Wellcome Trust Sanger Institute assembly to provide a finished reference genome for H. contortus. This review describes this process, compares the H. contortus genome assemblies with draft genomes from other members of the strongylid group and discusses future directions for parasite genomics using the H. contortus model. Copyright © 2016 Elsevier Ltd. All rights reserved.


July 7, 2019

Complete genome sequence of Vibrio parahaemolyticus FORC_023 isolated from raw fish storage water.

Vibrio parahaemolyticusis a Gram-negative halophilic bacterium that causes food-borne gastroenteritis in humans who consumeV. parahaemolyticus-contaminated seafood.The FORC_023 strain was isolated from raw fish storage water, containing live fish at a sashimi restaurant. Here, we aimed to sequence and characterize the genome of the FORC_023 strain. The genome of the FORC_023 strain showed two circular chromosomes, which contained 4227 open reading frames (ORFs), 131 tRNA genes and 37 rRNA genes. Although the genome of FORC_023 did not include major virulence genes, such as genes encoding thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH), it contained genes encoding other hemolysins, secretion systems, iron uptake-related proteins and severalV. parahaemolyticusislands. The highest average nucleotide identity value was obtained between the FORC_023 strain and UCM-V493 (CP007004-6). Comparative genomic analysis of FORC_023 with UCM-V493 revealed that FORC_023 carried an additional genomic region encoding virulence factors, such as repeats-in-toxin and type II secretion factors. Furthermore,in vitrocytotoxicity testing showed that FORC_023 exhibited a high level of cytotoxicity toward INT-407 human epithelial cells. These results suggested that the FORC_023 strain may be a food-borne pathogen.© FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.


July 7, 2019

Elucidating the triplicated ancestral genome structure of radish based on chromosome-level comparison with the Brassica genomes.

This study presents a chromosome-scale draft genome sequence of radish that is assembled into nine chromosomal pseudomolecules. A comprehensive comparative genome analysis with the Brassica genomes provides genomic evidences on the evolution of the mesohexaploid radish genome. Radish (Raphanus sativus L.) is an agronomically important root vegetable crop and its origin and phylogenetic position in the tribe Brassiceae is controversial. Here we present a comprehensive analysis of the radish genome based on the chromosome sequences of R. sativus cv. WK10039. The radish genome was sequenced and assembled into 426.2 Mb spanning >98 % of the gene space, of which 344.0 Mb were integrated into nine chromosome pseudomolecules. Approximately 36 % of the genome was repetitive sequences and 46,514 protein-coding genes were predicted and annotated. Comparative mapping of the tPCK-like ancestral genome revealed that the radish genome has intermediate characteristics between the Brassica A/C and B genomes in the triplicated segments, suggesting an internal origin from the genus Brassica. The evolutionary characteristics shared between radish and other Brassica species provided genomic evidences that the current form of nine chromosomes in radish was rearranged from the chromosomes of hexaploid progenitor. Overall, this study provides a chromosome-scale draft genome sequence of radish as well as novel insight into evolution of the mesohexaploid genomes in the tribe Brassiceae.


July 7, 2019

Insight into the evolution of the Solanaceae from the parental genomes of Petunia hybrida.

Petunia hybrida is a popular bedding plant that has a long history as a genetic model system. We report the whole-genome sequencing and assembly of inbred derivatives of its two wild parents, P. axillaris N and P. inflata S6. The assemblies include 91.3% and 90.2% coverage of their diploid genomes (1.4 Gb; 2n?=?14) containing 32,928 and 36,697 protein-coding genes, respectively. The genomes reveal that the Petunia lineage has experienced at least two rounds of hexaploidization: the older gamma event, which is shared with most Eudicots, and a more recent Solanaceae event that is shared with tomato and other solanaceous species. Transcription factors involved in the shift from bee to moth pollination reside in particularly dynamic regions of the genome, which may have been key to the remarkable diversity of floral colour patterns and pollination systems. The high-quality genome sequences will enhance the value of Petunia as a model system for research on unique biological phenomena such as small RNAs, symbiosis, self-incompatibility and circadian rhythms.


July 7, 2019

Resurgence of less-studied smut fungi as models of phytopathogenesis in the -omics era.

The smut fungi form a large, diverse, and non-monophyletic group of plant pathogens that have long served as both important pests of human agriculture but also as fertile organisms of scientific investigation. As modern techniques of molecular genetic analysis became available, many previously-studied species that proved refractive to these techniques fell by the wayside to become neglected. Now, as the advent of rapid and affordable next-generation sequencing provides genomic and transcriptomic resources for even these “forgotten” fungi, several species are making a come-back and retaking prominent places in phytopathogenic research. In this review, we highlight several of these smut fungi, with special emphasis on Microbotryum lychnidis-dioicae, an anther smut, whose molecular genetic tools have finally begun to catch up with its historical importance in classical genetics and now provide mechanistic insights for ecological studies, evolution of host/pathogen interaction, and investigations of emerging infectious disease.


July 7, 2019

Complete genome sequence of Pseudomonas fluorescens LBUM636, a strain with biocontrol capabilities against late blight of potato.

Herein provided is the full-genome sequence of Pseudomonas fluorescens LBUM636. This strain is a plant growth-promoting rhizobacterium (PGPR) which produces phenazine-1-carboxylic acid, an antibiotic involved in the biocontrol of numerous plant pathogens, including late blight of potato caused by the plant pathogen Phytophthora infestans. Copyright © 2016 Morrison et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.