X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, July 7, 2019

Complete genome sequences of six Legionella pneumophila isolates from two collocated outbreaks of Legionnaires’ disease in 2005 and 2008 in Sarpsborg/Fredrikstad, Norway.

Here, we report the complete genome sequences of Legionella pneumophila isolates from two collocated outbreaks of Legionnaires’ disease in 2005 and 2008 in Sarpsborg/Fredrikstad, Norway. One clinical and two environmental isolates were sequenced from each outbreak. The genome of all six isolates consisted of a 3.36 Mb-chromosome, while the 2005 genomes featured an additional 68 kb-episome sharing high sequence similarity with the L. pneumophila Lens plasmid. All six genomes contained multiple mobile genetic elements including novel combinations of type-IVA secretion systems. A comparative genomics study will be launched to resolve the genetic relationship between the L. pneumophila isolates. Copyright © 2016 Dybwad et al.

Read More »

Sunday, July 7, 2019

Listeria monocytogenes in stone fruits linked to a multistate outbreak: enumeration of cells and whole-genome sequencing.

In 2014, the identification of stone fruits contaminated with Listeria monocytogenes led to the subsequent identification of a multistate outbreak. Simultaneous detection and enumeration of L. monocytogenes were performed on 105 fruits, each weighing 127 to 145 g, collected from 7 contaminated lots. The results showed that 53.3% of the fruits yielded L. monocytogenes (lower limit of detection, 5 CFU/fruit), and the levels ranged from 5 to 2,850 CFU/fruit, with a geometric mean of 11.3 CFU/fruit (0.1 CFU/g of fruit). Two serotypes, IVb-v1 and 1/2b, were identified by a combination of PCR- and antiserum-based serotyping among isolates from fruits and…

Read More »

Sunday, July 7, 2019

Complete genome sequence of a copper-resistant bacterium from the citrus phyllosphere, Stenotrophomonas sp. strain LM091, obtained using long-read technology.

The Stenotrophomonas genus shows great adaptive potential including resistance to multiple antimicrobials, opportunistic pathogenicity, and production of numerous secondary metabolites. Using long-read technology, we report the sequence of a plant-associated Stenotrophomonas strain originating from the citrus phyllosphere that displays a copper resistance phenotype. Copyright © 2016 Richard et al.

Read More »

Sunday, July 7, 2019

Genomewide Dam methylation in Escherichia coli during long-term stationary phase.

DNA methylation in prokaryotes is widespread. The most common modification of the genome is the methylation of adenine at the N-6 position. In Escherichia coli K-12 and many gammaproteobacteria, this modification is catalyzed by DNA adenine methyltransferase (Dam) at the GATC consensus sequence and is known to modulate cellular processes including transcriptional regulation of gene expression, initiation of chromosomal replication, and DNA mismatch repair. While studies thus far have focused on the motifs associated with methylated adenine (meA), the frequency of meA across the genome, and temporal dynamics during early periods of incubation, here we conduct the first study on…

Read More »

Sunday, July 7, 2019

Cell cycle constraints and environmental control of local DNA hypomethylation in a-proteobacteria.

Heritable DNA methylation imprints are ubiquitous and underlie genetic variability from bacteria to humans. In microbial genomes, DNA methylation has been implicated in gene transcription, DNA replication and repair, nucleoid segregation, transposition and virulence of pathogenic strains. Despite the importance of local (hypo)methylation at specific loci, how and when these patterns are established during the cell cycle remains poorly characterized. Taking advantage of the small genomes and the synchronizability of a-proteobacteria, we discovered that conserved determinants of the cell cycle transcriptional circuitry establish specific hypomethylation patterns in the cell cycle model system Caulobacter crescentus. We used genome-wide methyl-N6-adenine (m6A-) analyses…

Read More »

Sunday, July 7, 2019

Complete genome anatomy of the emerging potato pathogen Dickeya solani type strain IPO 2222(T).

Several species of the genus Dickeya provoke soft rot and blackleg diseases on a wide range of plants and crops. Dickeya solani has been identified as the causative agent of diseases outbreaks on potato culture in Europe for the last decade. Here, we report the complete genome of the D. solani IPO 2222(T). Using PacBio and Illumina technologies, a unique circular chromosome of 4,919,833 bp was assembled. The G?+?C content reaches 56% and the genomic sequence contains 4,059 predicted proteins. The ANI values calculated for D. solani IPO 2222(T) vs. other available D. solani genomes was over 99.9% indicating a…

Read More »

Sunday, July 7, 2019

Comparative genomics of Beauveria bassiana: uncovering signatures of virulence against mosquitoes.

Entomopathogenic fungi such as Beauveria bassiana are promising biological agents for control of malaria mosquitoes. Indeed, infection with B. bassiana reduces the lifespan of mosquitoes in the laboratory and in the field. Natural isolates of B. bassiana show up to 10-fold differences in virulence between the most and the least virulent isolate. In this study, we sequenced the genomes of five isolates representing the extremes of low/high virulence and three RNA libraries, and applied a genome comparison approach to uncover genetic mechanisms underpinning virulence.A high-quality, near-complete genome assembly was achieved for the highly virulent isolate Bb8028, which was compared to…

Read More »

Sunday, July 7, 2019

Genome sequence of a commensal bacterium, Enterococcus faecalis CBA7120, isolated from a Korean fecal sample.

Enterococcus faecalis, the type strain of the genus Enterococcus, is not only a commensal bacterium in the gastrointestinal tract in vertebrates and invertebrates, but also causes serious disease as an opportunistic pathogen. To date, genome sequences have been published for over four hundred E. faecalis strains; however, pathogenicity of these microbes remains complicated. To increase our knowledge of E. faecalis virulence factors, we isolated strain CBA7120 from the feces of an 81-year-old female from the Republic of Korea and performed a comparative genomic analysis.The genome sequence of E. faecalis CBA7120 is 3,134,087 bp in length, with a G + C content of 37.35 mol%,…

Read More »

Sunday, July 7, 2019

Use of single molecule sequencing for comparative genomics of an environmental and a clinical isolate of Clostridium difficile ribotype 078.

How the pathogen Clostridium difficile might survive, evolve and be transferred between reservoirs within the natural environment is poorly understood. Some ribotypes are found both in clinical and environmental settings. Whether these strains are distinct from each another and evolve in the specific environments is not established. The possession of a highly mobile genome has contributed to the genetic diversity and ongoing evolution of C. difficile. Interpretations of genetic diversity have been limited by fragmented assemblies resulting from short-read length sequencing approaches and by a limited understanding of epigenetic regulation of diversity. To address this, single molecule real time (SMRT) sequencing…

Read More »

Sunday, July 7, 2019

The draft genome of whitefly Bemisia tabaci MEAM1, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance.

The whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) is among the 100 worst invasive species in the world. As one of the most important crop pests and virus vectors, B. tabaci causes substantial crop losses and poses a serious threat to global food security. We report the 615-Mb high-quality genome sequence of B. tabaci Middle East-Asia Minor 1 (MEAM1), the first genome sequence in the Aleyrodidae family, which contains 15,664 protein-coding genes. The B. tabaci genome is highly divergent from other sequenced hemipteran genomes, sharing no detectable synteny. A number of known detoxification gene families, including cytochrome P450s and UDP-glucuronosyltransferases, are significantly…

Read More »

Sunday, July 7, 2019

Complete genome sequence of Rothia aeria type strain JCM 11412, isolated from air in the Russian space laboratory Mir.

Here, we present the complete genome sequence of Rothia aeria type strain JCM 11412, isolated from air in the Russian space laboratory Mir. Recently, there has been an increasing number of reports on infections caused by R. aeria The genomic information will enable researchers to identify the pathogenicity of this organism. Copyright © 2016 Nambu et al.

Read More »

Sunday, July 7, 2019

Complete genome sequence of Streptococcus sp. strain NPS 308.

Streptococcus sp. strain NPS 308, isolated from an 8-year-old girl diagnosed with infective endocarditis, likely presents a novel species of Streptococcus Here, we present a complete genome sequence of this species, which will contribute to better understanding of the pathogenesis of infective endocarditis. Copyright © 2016 Kondo et al.

Read More »

Sunday, July 7, 2019

Whole genome sequence and comparative genomics of the novel Lyme borreliosis causing pathogen, Borrelia mayonii.

Borrelia mayonii, a Borrelia burgdorferi sensu lato (Bbsl) genospecies, was recently identified as a cause of Lyme borreliosis (LB) among patients from the upper midwestern United States. By microscopy and PCR, spirochete/genome loads in infected patients were estimated at 105 to 106 per milliliter of blood. Here, we present the full chromosome and plasmid sequences of two B. mayonii isolates, MN14-1420 and MN14-1539, cultured from blood of two of these patients. Whole genome sequencing and assembly was conducted using PacBio long read sequencing (Pacific Biosciences RSII instrument) followed by hierarchical genome-assembly process (HGAP). The B. mayonii genome is ~1.31 Mbp…

Read More »

1 310 311 312 313 314 354

Subscribe for blog updates:

Archives