X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
February 12, 2015

A unique chromatin complex occupies young a-satellite arrays of human centromeres.

The intractability of homogeneous a-satellite arrays has impeded understanding of human centromeres. Artificial centromeres are produced from higher-order repeats (HORs) present at centromere edges, although the exact sequences and chromatin conformations of centromere cores remain unknown. We use high-resolution chromatin immunoprecipitation (ChIP) of centromere components followed by clustering of sequence data as an unbiased approach to identify functional centromere sequences. We find that specific dimeric a-satellite units shared by multiple individuals dominate functional human centromeres. We identify two recently homogenized a-satellite dimers that are occupied by precisely positioned CENP-A (cenH3) nucleosomes with two ~100-base pair (bp) DNA wraps in tandem…

Read More »

February 12, 2015

A17, the first sequenced strain of Lactococcus lactis subsp. cremoris with potential immunomodulatory functions.

Lactococcus lactis subsp. cremoris A17, isolated from Taiwan fermented cabbage, is the first sequenced strain of L. lactis subsp. cremoris with immunomodulatory activity and antiallergic functions. The resulting A17 draft genome contains 2,679,936 bp and indicates that A17 is a potential exopolysaccharide-producing strain without any known virulence gene. Copyright © 2015 Yang et al.

Read More »

February 6, 2015

Defining the sequence requirements for the positioning of base J in DNA using SMRT sequencing.

Base J (ß-D-glucosyl-hydroxymethyluracil) replaces 1% of T in the Leishmania genome and is only found in telomeric repeats (99%) and in regions where transcription starts and stops. This highly restricted distribution must be co-determined by the thymidine hydroxylases (JBP1 and JBP2) that catalyze the initial step in J synthesis. To determine the DNA sequences recognized by JBP1/2, we used SMRT sequencing of DNA segments inserted into plasmids grown in Leishmania tarentolae. We show that SMRT sequencing recognizes base J in DNA. Leishmania DNA segments that normally contain J also picked up J when present in the plasmid, whereas control sequences…

Read More »

February 5, 2015

Draft genome sequences of five new strains of methylophilaceae isolated from lake washington sediment.

We sequenced the genomes of five new Methylophilaceae strains isolated from Lake Washington sediment. We used the new sequences to sort these new strains into specific Methylophilaceae ecotypes, including one novel ecotype. The new genomes expand the known diversity of Methylophilaceae and provide new models for studying the ecology of methylotrophy. Copyright © 2015 McTaggart et al.

Read More »

February 1, 2015

One chromosome, one contig: complete microbial genomes from long-read sequencing and assembly.

Like a jigsaw puzzle with large pieces, a genome sequenced with long reads is easier to assemble. However, recent sequencing technologies have favored lowering per-base cost at the expense of read length. This has dramatically reduced sequencing cost, but resulted in fragmented assemblies, which negatively affect downstream analyses and hinder the creation of finished (gapless, high-quality) genomes. In contrast, emerging long-read sequencing technologies can now produce reads tens of kilobases in length, enabling the automated finishing of microbial genomes for under $1000. This promises to improve the quality of reference databases and facilitate new studies of chromosomal structure and variation.…

Read More »

February 1, 2015

Draft genome of Janthinobacterium sp. RA13 isolated from Lake Washington sediment.

Sequencing the genome of Janthinobacterium sp. RA13 from Lake Washington sediment is announced. From the genome content, a versatile life-style is predicted, but not bona fide methylotrophy. With the availability of its genomic sequence, Janthinobacterium sp. RA13 presents a prospective model for studying microbial communities in lake sediments. Copyright © 2015 McTaggart et al.

Read More »

February 1, 2015

Whole-genome sequence of a Bordetella pertussis Brazilian vaccine strain.

Despite the reduction in incidence after vaccination, pertussis disease is still considered a public health problem worldwide, mainly due to recent and potential new outbreaks. We report here the complete genome of the Bordetella pertussis Butantan strain used in the Brazilian National Immunization Program as a whole-cell pertussis antigen to compose vaccines such as DTwP (diphtheria, tetanus, and whole-cell pertussis).

Read More »

February 1, 2015

Complete genome sequence of the unclassified iron-oxidizing, chemolithoautotrophic Burkholderiales bacterium GJ-E10, isolated from an acidic river.

Burkholderiales bacterium GJ-E10, isolated from the Tamagawa River in Akita Prefecture, Japan, is an unclassified, iron-oxidizing chemolithoautotrophic bacterium. Its single circular genome, consisting of 3,276,549 bp, was sequenced by using three types of next-generation sequencers and the sequences were then confirmed by PCR-based Sanger sequencing. Copyright © 2015 Fukushima et al.

Read More »

February 1, 2015

Chloroplast genome of Aconitum barbatum var. puberulum (Ranunculaceae) derived from CCS reads using the PacBio RS platform.

The chloroplast genome (cp genome) of Aconitum barbatum var. puberulum was sequenced using the third-generation sequencing platform based on the single-molecule real-time (SMRT) sequencing approach. To our knowledge, this is the first reported complete cp genome of Aconitum, and we anticipate that it will have great value for phylogenetic studies of the Ranunculaceae family. In total, 23,498 CCS reads and 20,685,462 base pairs were generated, the mean read length was 880 bp, and the longest read was 2,261 bp. Genome coverage of 100% was achieved with a mean coverage of 132× and no gaps. The accuracy of the assembled genome…

Read More »

February 1, 2015

Best practices in insect genome sequencing: What works and what doesn’t.

The last decade of decreasing DNA sequencing costs and proliferating sequencing services in core labs and companies has brought the de-novo genome sequencing and assembly of insect species within reach for many entomologists. However, sequence production alone is not enough to generate a high quality reference genome, and in many cases, poor planning can lead to extremely fragmented genome assemblies preventing high quality gene annotation and other desired analyses. Insect genomes can be problematic to assemble, due to combinations of high polymorphism, inability to breed for genome homozygocity, and small physical sizes limiting the quantity of DNA able to be…

Read More »

February 1, 2015

Keeping an eye on P. aeruginosa.

This month’s Genome Watch looks at how whole-genome sequencing (WGS) can be used to track the source of Pseudomonas aeruginosa infection and to investigate the transition and adaptation of this opportunistic pathogen from the environment to the human host.

Read More »

February 1, 2015

Gut symbionts from distinct hosts exhibit genotoxic activity via divergent colibactin biosynthetic pathways.

Secondary metabolites produced by nonribosomal peptide synthetase (NRPS) or polyketide synthase (PKS) pathways are chemical mediators of microbial interactions in diverse environments. However, little is known about their distribution, evolution, and functional roles in bacterial symbionts associated with animals. A prominent example is "colibactin", a largely unknown family of secondary metabolites produced by Escherichia coli via a hybrid NRPS-PKS biosynthetic pathway, inflicting DNA damage upon eukaryotic cells and contributing to colorectal cancer and tumor formation in the mammalian gut. Thus far, homologs of this pathway have only been found in closely related Enterobacteriaceae, while a divergent variant of this gene…

Read More »

1 311 312 313 314 315 340

Subscribe for blog updates:

Archives