Menu
July 7, 2019  |  

Single-molecule sequencing and Hi-C-based proximity-guided assembly of amaranth (Amaranthus hypochondriacus) chromosomes provide insights into genome evolution.

Amaranth (Amaranthus hypochondriacus) was a food staple among the ancient civilizations of Central and South America that has recently received increased attention due to the high nutritional value of the seeds, with the potential to help alleviate malnutrition and food security concerns, particularly in arid and semiarid regions of the developing world. Here, we present a reference-quality assembly of the amaranth genome which will assist the agronomic development of the species.Utilizing single-molecule, real-time sequencing (Pacific Biosciences) and chromatin interaction mapping (Hi-C) to close assembly gaps and scaffold contigs, respectively, we improved our previously reported Illumina-based assembly to produce a chromosome-scale assembly with a scaffold N50 of 24.4 Mb. The 16 largest scaffolds contain 98% of the assembly and likely represent the haploid chromosomes (n?=?16). To demonstrate the accuracy and utility of this approach, we produced physical and genetic maps and identified candidate genes for the betalain pigmentation pathway. The chromosome-scale assembly facilitated a genome-wide syntenic comparison of amaranth with other Amaranthaceae species, revealing chromosome loss and fusion events in amaranth that explain the reduction from the ancestral haploid chromosome number (n?=?18) for a tetraploid member of the Amaranthaceae.The assembly method reported here minimizes cost by relying primarily on short-read technology and is one of the first reported uses of in vivo Hi-C for assembly of a plant genome. Our analyses implicate chromosome loss and fusion as major evolutionary events in the 2n?=?32 amaranths and clearly establish the homoeologous relationship among most of the subgenome chromosomes, which will facilitate future investigations of intragenomic changes that occurred post polyploidization.


July 7, 2019  |  

The cacao Criollo genome v2.0: an improved version of the genome for genetic and functional genomic studies.

Theobroma cacao L., native to the Amazonian basin of South America, is an economically important fruit tree crop for tropical countries as a source of chocolate. The first draft genome of the species, from a Criollo cultivar, was published in 2011. Although a useful resource, some improvements are possible, including identifying misassemblies, reducing the number of scaffolds and gaps, and anchoring un-anchored sequences to the 10 chromosomes.We used a NGS-based approach to significantly improve the assembly of the Belizian Criollo B97-61/B2 genome. We combined four Illumina large insert size mate paired libraries with 52x of Pacific Biosciences long reads to correct misassembled regions and reduced the number of scaffolds. We then used genotyping by sequencing (GBS) methods to increase the proportion of the assembly anchored to chromosomes.The scaffold number decreased from 4,792 in assembly V1 to 554 in V2 while the scaffold N50 size has increased from 0.47 Mb in V1 to 6.5 Mb in V2. A total of 96.7% of the assembly was anchored to the 10 chromosomes compared to 66.8% in the previous version. Unknown sites (Ns) were reduced from 10.8% to 5.7%. In addition, we updated the functional annotations and performed a new RefSeq structural annotation based on RNAseq evidence.Theobroma cacao Criollo genome version 2 will be a valuable resource for the investigation of complex traits at the genomic level and for future comparative genomics and genetics studies in cacao tree. New functional tools and annotations are available on the Cocoa Genome Hub ( http://cocoa-genome-hub.southgreen.fr ).


July 7, 2019  |  

Multiple hybrid de novo genome assembly of finger millet, an orphan allotetraploid crop.

Finger millet (Eleusine coracana (L.) Gaertn) is an important crop for food security because of its tolerance to drought, which is expected to be exacerbated by global climate changes. Nevertheless, it is often classified as an orphan/underutilized crop because of the paucity of scientific attention. Among several small millets, finger millet is considered as an excellent source of essential nutrient elements, such as iron and zinc; hence, it has potential as an alternate coarse cereal. However, high-quality genome sequence data of finger millet are currently not available. One of the major problems encountered in the genome assembly of this species was its polyploidy, which hampers genome assembly compared with a diploid genome. To overcome this problem, we sequenced its genome using diverse technologies with sufficient coverage and assembled it via a novel multiple hybrid assembly workflow that combines next-generation with single-molecule sequencing, followed by whole-genome optical mapping using the Bionano Irys® system. The total number of scaffolds was 1,897 with an N50 length?>2.6?Mb and detection of 96% of the universal single-copy orthologs. The majority of the homeologs were assembled separately. This indicates that the proposed workflow is applicable to the assembly of other allotetraploid genomes.© The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.


July 7, 2019  |  

Is sex irreplaceable? Towards the molecular regulation of apomixis

Apomixis, defined as the asexual plant reproduction through seeds that results in the production of genetically uniform progeny and a natural way of cloning. Currently there are more than 400 plant species known to use apomixis as a strategy for their propagation. The primary fundamental aspects of apomixis are the bypassing of meiosis and parthenogenetic development of the embryo without fertilization. Apomixis attracts special attention because of its potential value for agriculture, as it could be harnessed for plant breeding programs enabling the permanent fixation of heterosis in crop plants. A better understanding of the molecular and genetic regulation of apomixis is important for developmental and evolutionary perspectives but also for implementation of engineering of apomixis traits into agricultural crop plants. Despite apomixis is considered as one of the key technologies for the improving agriculture, but currently how genetic and molecular regulation of this important trait occurs is not fully known. Recent information on the biology of apomixis and genes and genetic loci associated with the regulation of different components of apomixis is provided in the present review.


July 7, 2019  |  

A high-quality genome assembly of quinoa provides insights into the molecular basis of salt bladder-based salinity tolerance and the exceptional nutritional value.

Chenopodium quinoa is a halophytic pseudocereal crop that is being cultivated in an ever-growing number of countries. Because quinoa is highly resistant to multiple abiotic stresses and its seed has a better nutritional value than any other major cereals, it is regarded as a future crop to ensure global food security. We generated a high-quality genome draft using an inbred line of the quinoa cultivar Real. The quinoa genome experienced one recent genome duplication about 4.3 million years ago, likely reflecting the genome fusion of two Chenopodium parents, in addition to the ? paleohexaploidization reported for most eudicots. The genome is highly repetitive (64.5% repeat content) and contains 54 438 protein-coding genes and 192 microRNA genes, with more than 99.3% having orthologous genes from glycophylic species. Stress tolerance in quinoa is associated with the expansion of genes involved in ion and nutrient transport, ABA homeostasis and signaling, and enhanced basal-level ABA responses. Epidermal salt bladder cells exhibit similar characteristics as trichomes, with a significantly higher expression of genes related to energy import and ABA biosynthesis compared with the leaf lamina. The quinoa genome sequence provides insights into its exceptional nutritional value and the evolution of halophytes, enabling the identification of genes involved in salinity tolerance, and providing the basis for molecular breeding in quinoa.


July 7, 2019  |  

Gene losses and partial deletion of small single-copy regions of the chloroplast genomes of two hemiparasitic Taxillus species.

Numerous variations are known to occur in the chloroplast genomes of parasitic plants. We determined the complete chloroplast genome sequences of two hemiparasitic species, Taxillus chinensis and T. sutchuenensis, using Illumina and PacBio sequencing technologies. These species are the first members of the family Loranthaceae to be sequenced. The complete chloroplast genomes of T. chinensis and T. sutchuenensis comprise circular 121,363 and 122,562 bp-long molecules with quadripartite structures, respectively. Compared with the chloroplast genomes of Nicotiana tabacum and Osyris alba, all ndh genes as well as three ribosomal protein genes, seven tRNA genes, four ycf genes, and the infA gene of these two species have been lost. The results of the maximum likelihood and neighbor-joining phylogenetic trees strongly support the theory that Loranthaceae and Viscaceae are monophyletic clades. This research reveals the effect of a parasitic lifestyle on the chloroplast structure and genome content of T. chinensis and T. sutchuenensis, and enhances our understanding of the discrepancies in terms of assembly results between Illumina and PacBio.


July 7, 2019  |  

Echinochloa crus-galli genome analysis provides insight into its adaptation and invasiveness as a weed.

Barnyardgrass (Echinochloa crus-galli) is a pernicious weed in agricultural fields worldwide. The molecular mechanisms underlying its success in the absence of human intervention are presently unknown. Here we report a draft genome sequence of the hexaploid species E. crus-galli, i.e., a 1.27?Gb assembly representing 90.7% of the predicted genome size. An extremely large repertoire of genes encoding cytochrome P450 monooxygenases and glutathione S-transferases associated with detoxification are found. Two gene clusters involved in the biosynthesis of an allelochemical 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) and a phytoalexin momilactone A are found in the E. crus-galli genome, respectively. The allelochemical DIMBOA gene cluster is activated in response to co-cultivation with rice, while the phytoalexin momilactone A gene cluster specifically to infection by pathogenic Pyricularia oryzae. Our results provide a new understanding of the molecular mechanisms underlying the extreme adaptation of the weed.


July 7, 2019  |  

The Tartary buckwheat genome provides insights into rutin biosynthesis and abiotic stress tolerance.

Tartary buckwheat (Fagopyrum tataricum) is an important pseudocereal crop that is strongly adapted to growth in adverse environments. Its gluten-free grain contains complete proteins with a well-balanced composition of essential amino acids and is a rich source of beneficial phytochemicals that provide significant health benefits. Here, we report a high-quality, chromosome-scale Tartary buckwheat genome sequence of 489.3 Mb that is assembled by combining whole-genome shotgun sequencing of both Illumina short reads and single-molecule real-time long reads, sequence tags of a large DNA insert fosmid library, Hi-C sequencing data, and BioNano genome maps. We annotated 33 366 high-confidence protein-coding genes based on expression evidence. Comparisons of the intra-genome with the sugar beet genome revealed an independent whole-genome duplication that occurred in the buckwheat lineage after they diverged from the common ancestor, which was not shared with rosids or asterids. The reference genome facilitated the identification of many new genes predicted to be involved in rutin biosynthesis and regulation, aluminum stress resistance, and in drought and cold stress responses. Our data suggest that Tartary buckwheat’s ability to tolerate high levels of abiotic stress is attributed to the expansion of several gene families involved in signal transduction, gene regulation, and membrane transport. The availability of these genomic resources will facilitate the discovery of agronomically and nutritionally important genes and genetic improvement of Tartary buckwheat. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.


July 7, 2019  |  

Sunflower leaf senescence: A complex genetic process with economic impact on crop production

Leaf senescence is a complex process controlled by multiple genetic and environmental variables. In different crops, a delay in leaf senescence has an important impact on grain yield trough the maintenance of the photosynthetic leaf area during the reproductive stage. In sunflower (Helianthus annuus L.), the fourth largest oil crop worldwide, senescence reduces the capacity of plants to maintain their green leaf area for longer periods, especially during the grain filling phase, leading to important economic losses. In crop species, taking into account the temporal gap between the onset and the phenotypic detection of senescence, identification of both, candidate genes and functional stay-green are indispensable to enable the early detection of senescence, the elucidation of molecular mechanisms and the development of tools for breeding applications. In this chapter a comprehensive literature revision of leaf senescence process not only in model plant species but also in agronomical relevant crops is presented. Results derived from system biology approaches integrating transcriptomic, metabolomic and physiological data as well as those leading to the selection and characterization of stay green sunflower genotypes are included, making an important contribution to the knowledge of leaf senescence process and providing a valuable tool to assist in crop breeding.


July 7, 2019  |  

New insights into structural organization and gene duplication in a 1.75-Mb genomic region harboring the a-gliadin gene family in Aegilops tauschii, the source of wheat D genome.

Among the wheat prolamins important for its end-use traits, a-gliadins are the most abundant, and are also a major cause of food-related allergies and intolerances. Previous studies of various wheat species estimated that between 25 and 150 a-gliadin genes reside in the Gli-2 locus regions. To better understand the evolution of this complex gene family, the DNA sequence of a 1.75-Mb genomic region spanning the Gli-2 locus was analyzed in the diploid grass, Aegilops tauschii, the ancestral source of D genome in hexaploid bread wheat. Comparison with orthologous regions from rice, sorghum, and Brachypodium revealed rapid and dynamic changes only occurring to the Ae. tauschii Gli-2 region, including insertions of high numbers of non-syntenic genes and a high rate of tandem gene duplications, the latter of which have given rise to 12 copies of a-gliadin genes clustered within a 550-kb region. Among them, five copies have undergone pseudogenization by various mutation events. Insights into the evolutionary relationship of the duplicated a-gliadin genes were obtained from their genomic organization, transcription patterns, transposable element insertions and phylogenetic analyses. An ancestral glutamate-like receptor (GLR) gene encoding putative amino acid sensor in all four grass species has duplicated only in Ae. tauschii and generated three more copies that are interspersed with the a-gliadin genes. Phylogenetic inference and different gene expression patterns support functional divergence of the Ae. tauschii GLR copies after duplication. Our results suggest that the duplicates of a-gliadin and GLR genes have likely taken different evolutionary paths; conservation for the former and neofunctionalization for the latter.© 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.


July 7, 2019  |  

The unusual S locus of Leavenworthia is composed of two sets of paralogous loci.

The Leavenworthia self-incompatibility locus (S locus) consists of paralogs (Lal2, SCRL) of the canonical Brassicaceae S locus genes (SRK, SCR), and is situated in a genomic position that differs from the ancestral one in the Brassicaceae. Unexpectedly, in a small number of Leavenworthia alabamica plants examined, sequences closely resembling exon 1 of SRK have been found, but the function of these has remained unclear. BAC cloning and expression analyses were employed to characterize these SRK-like sequences. An SRK-positive Bacterial Artificial Chromosome clone was found to contain complete SRK and SCR sequences located close by one another in the derived genomic position of the Leavenworthia S locus, and in place of the more typical Lal2 and SCRL sequences. These sequences are expressed in stigmas and anthers, respectively, and crossing data show that the SRK/SCR haplotype is functional in self-incompatibility. Population surveys indicate that < 5% of Leavenworthia S loci possess such alleles. An ancestral translocation or recombination event involving SRK/SCR and Lal2/SCRL likely occurred, together with neofunctionalization of Lal2/SCRL, and both haplotype groups now function as Leavenworthia S locus alleles. These findings suggest that S locus alleles can have distinctly different evolutionary origins.© 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.


July 7, 2019  |  

Draft nuclear genome sequence of the halophilic and beta-carotene-accumulating green alga Dunaliella salina strain CCAP19/18.

The halotolerant alga Dunaliella salina is a model for stress tolerance and is used commercially for production of beta-carotene (=pro-vitamin A). The presented draft genome of the genuine strain CCAP19/18 will allow investigations into metabolic processes involved in regulation of stress responses, including carotenogenesis and adaptations to life in high-salinity environments. Copyright © 2017 Polle et al.


July 7, 2019  |  

The asparagus genome sheds light on the origin and evolution of a young Y chromosome.

Sex chromosomes evolved from autosomes many times across the eukaryote phylogeny. Several models have been proposed to explain this transition, some involving male and female sterility mutations linked in a region of suppressed recombination between X and Y (or Z/W, U/V) chromosomes. Comparative and experimental analysis of a reference genome assembly for a double haploid YY male garden asparagus (Asparagus officinalis L.) individual implicates separate but linked genes as responsible for sex determination. Dioecy has evolved recently within Asparagus and sex chromosomes are cytogenetically identical with the Y, harboring a megabase segment that is missing from the X. We show that deletion of this entire region results in a male-to-female conversion, whereas loss of a single suppressor of female development drives male-to-hermaphrodite conversion. A single copy anther-specific gene with a male sterile Arabidopsis knockout phenotype is also in the Y-specific region, supporting a two-gene model for sex chromosome evolution.


July 7, 2019  |  

Comparative analysis of the radish genome with Brassica genomes

Raphanus sativus L. includes an annual root vegetable crop, radish, and diverse wild species. R. sativus has a long history of domestication, but its phylogenetic position in the tribe Brassiceae is controversial. A comprehensive analysis of the R. sativus genome will provide fundamental information about the structure of its genome, evolutionary features of polyploidy, and significant insight for phylogenetic delimitation of this species. Diverse genomic resources, including a high-density genetic map, clone libraries, cytogenetic data, and transcriptome data, have been developed to sequence the genome. Recently, the R. sativus cv. ‘WK10039’ (2n = 18, 510.8 Mb) genome was sequenced and assembled into nine chromosome pseudomolecules spanning >98% of the gene space. Comparative mapping of the tPCK-like ancestral genome based on conserved ortholog set markers and proteome comparison revealed that the R. sativus genome has intermediate characteristics between the Brassica A/C and B genomes with triplicated segments, suggesting an internal origin from the genus Brassica. The evolutionary characteristics shared between R. sativus and diploid Brassica species provide genomic evidence for species delimitation of R. sativus and reconstruction of the mesohexaploid ancestral genome.


July 7, 2019  |  

Genetic maps and whole genome sequences of radish

Radish, Raphanus sativus L., is a member of Brassicaceae, to which Arabidopsis thaliana, a model plant in plant biology, belongs, as do other Brassica species including important crops. However, genetic and genomic studies of radish have been behind those of Arabidopsis and Brassica. In this decade, much effort has been made to develop genetic resources for radish, e.g., DNA markers, genetic maps, and whole genome sequences. Studies using the obtained information have revealed the genome structure of radish in terms of ancestral karyotype and have also prompted the identification of genes for agronomically important traits in radish through a map-based cloning strategy and quantitative trait locus analysis. In this chapter, we review the evolving development of radish genetic map in the past 15 years and the current status of genome sequencing of radish. We also introduce the latest strategy for the construction of a high-density genetic map using next-generation sequencing technology and propose a prospective direction of genetics and genomics research in radish which would be helpful for researchers and breeders in their efforts to promote radish breeding programs efficiently.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.