X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Tuesday, April 21, 2020

CRISPR/Cas9-targeted enrichment and long-read sequencing of the Fuchs endothelial corneal dystrophy-associated TCF4 triplet repeat.

To demonstrate the utility of an amplification-free long-read sequencing method to characterize the Fuchs endothelial corneal dystrophy (FECD)-associated intronic TCF4 triplet repeat (CTG18.1).We applied an amplification-free method, utilizing the CRISPR/Cas9 system, in combination with PacBio single-molecule real-time (SMRT) long-read sequencing, to study CTG18.1. FECD patient samples displaying a diverse range of CTG18.1 allele lengths and zygosity status (n?=?11) were analyzed. A robust data analysis pipeline was developed to effectively filter, align, and interrogate CTG18.1-specific reads. All results were compared with conventional polymerase chain reaction (PCR)-based fragment analysis.CRISPR-guided SMRT sequencing of CTG18.1 provided accurate genotyping information for all samples and phasing…

Read More »

Tuesday, April 21, 2020

A comprehensive evaluation of long read error correction methods

Motivation: Third-generation sequencing technologies can sequence long reads, which is advancing the frontiers of genomics research. However, their high error rates prohibit accurate and efficient downstream analysis. This difficulty has motivated the development of many long read error correction tools, which tackle this problem through sampling redundancy and/or leveraging accurate short reads of the same biological samples. Existing studies to asses these tools use simulated data sets, and are not sufficiently comprehensive in the range of software covered or diversity of evaluation measures used. Results: In this paper, we present a categorization and review of long read error correction methods,…

Read More »

Tuesday, April 21, 2020

Fam83F induces p53 stabilisation and promotes its activity.

p53 is one of the most important tumour suppressor proteins currently known. It is activated in response to DNA damage and this activation leads to proliferation arrest and cell death. The abundance and activity of p53 are tightly controlled and reductions in p53’s activity can contribute to the development of cancer. Here, we show that Fam83F increases p53 protein levels by protein stabilisation. Fam83F interacts with p53 and decreases its ubiquitination and degradation. Fam83F is induced in response to DNA damage and its overexpression also increases p53 activity in cell culture experiments and in zebrafish embryos. Downregulation of Fam83F decreases…

Read More »

Tuesday, April 21, 2020

Combinations of Spok genes create multiple meiotic drivers in Podospora.

Meiotic drive is the preferential transmission of a particular allele during sexual reproduction. The phenomenon is observed as spore killing in multiple fungi. In natural populations of Podospora anserina, seven spore killer types (Psks) have been identified through classical genetic analyses. Here we show that the Spok gene family underlies the Psks. The combination of Spok genes at different chromosomal locations defines the spore killer types and creates a killing hierarchy within a population. We identify two novel Spok homologs located within a large (74-167 kbp) region (the Spok block) that resides in different chromosomal locations in different strains. We…

Read More »

Tuesday, April 21, 2020

The genomes of polyextremophilic Cyanidiales contain 1% horizontally transferred genes with diverse adaptive functions.

The role and extent of horizontal gene transfer (HGT) in eukaryotes are hotly disputed topics that impact our understanding of the origin of metabolic processes and the role of organelles in cellular evolution. We addressed this issue by analyzing 10 novel Cyanidiales genomes and determined that 1% of their gene inventory is HGT-derived. Numerous HGT candidates share a close phylogenetic relationship with prokaryotes that live in similar habitats as the Cyanidiales and encode functions related to polyextremophily. HGT candidates differ from native genes in GC-content, number of splice sites, and gene expression. HGT candidates are more prone to loss, which…

Read More »

Tuesday, April 21, 2020

Complete Genome Sequence of a Parabacteroides distasonis Strain (CavFT hAR46) Isolated from a Gut Wall-Cavitating Microlesion in a Patient with Severe Crohn’s Disease.

Crohn’s disease (CD) is a chronic inflammatory bowel disease (IBD) of the digestive tract in humans. There is evidence that Parabacteroides distasonis could contribute to IBD. Here, we present the complete genome sequence of a strain designated CavFT-hAR46, which was isolated from a gut intramural cavernous fistulous tract (CavFT) microlesion in a CD patient.Copyright © 2019 Yang et al.

Read More »

Tuesday, April 21, 2020

Complete Genome Sequence of Dehalococcoides mccartyi Strain FL2, a Trichloroethene-Respiring Anaerobe Isolated from Pristine Freshwater Sediment.

Dehalococcoides mccartyi strain FL2 couples growth to hydrogen oxidation and reductive dechlorination of trichloroethene and cis- and trans-1,2-dichloroethenes. Strain FL2 has a 1.42-Mb genome with a G+C content of 47.0% and carries 1,465 protein-coding sequences, including 24 reductive dehalogenase genes.Copyright © 2019 Yan et al.

Read More »

Tuesday, April 21, 2020

Complete Genome and Plasmid Sequences of Seven Isolates of Salmonella enterica subsp. enterica Harboring the mcr-1 Gene Obtained from Food in China.

Seven Salmonella enterica subsp. enterica isolates were identified as carrying the mcr-1 gene, by using a real-time fluorescence quantitative PCR method, from a total of 2,558 isolates which were cultured from various food origins in China between 2011 and 2016. Few complete genomes of Salmonella strains harboring the mcr-1 gene have been reported to date, so we report here the complete genome and plasmid sequences of all of these isolates to provide useful references for understanding the prevalence of foodborne Salmonella enterica subsp. enterica isolates carrying mcr-1.Copyright © 2019 Hu et al.

Read More »

Tuesday, April 21, 2020

Complete Genome Sequence of Kocuria indica CE7, Isolated from Human Skin.

Here, we report the complete genome sequence of Kocuria indica CE7, isolated from human skin. This strain possesses a 2,809-kbp chromosome and a 32-kbp plasmid with 2,507 coding sequences. In particular, the genome contains multiple genes potentially involved in adaptations in pH homeostasis and salt tolerance.Copyright © 2019 Lee et al.

Read More »

Tuesday, April 21, 2020

Draft Genome Sequences of Shiga Toxin-Producing Escherichia coli O157:H7 Strains Recovered from a Major Production Region for Leafy Greens in California.

Shiga toxin-producing Escherichia coli O157:H7 is a foodborne pathogen and is responsible for outbreaks of human gastroenteritis. This report documents the draft genome sequences of nine O157:H7 cattle strains, which were identified to be PCR positive for a Shiga toxin gene but displayed different levels of functional toxin activity.

Read More »

Tuesday, April 21, 2020

Methylomes of Two Extremely Halophilic Archaea Species, Haloarcula marismortui and Haloferax mediterranei.

The genomes of two extremely halophilic Archaea species, Haloarcula marismortui and Haloferax mediterranei, were sequenced using single-molecule real-time sequencing. The ~4-Mbp genomes are GC rich with multiple large plasmids and two 4-methyl-cytosine patterns. Methyl transferases were incorporated into the Restriction Enzymes Database (REBASE), and gene annotation was incorporated into the Haloarchaeal Genomes Database (HaloWeb).Copyright © 2019 DasSarma et al.

Read More »

1 2 3 4 68

Subscribe for blog updates:

Archives