Menu
June 1, 2021  |  

An improved circular consensus algorithm with an application to detection of HIV-1 Drug-Resistance Associated Mutations (DRAMs)

Scientists who require confident resolution of heterogeneous populations across complex regions have been unable to transition to short-read sequencing methods. They continue to depend on Sanger Sequencing despite its cost and time inefficiencies. Here we present a new redesigned algorithm that allows the generation of circular consensus sequences (CCS) from individual SMRT Sequencing reads. With this new algorithm, dubbed CCS2, it is possible to reach arbitrarily high quality across longer insert lengths at a lower cost and higher throughput than Sanger Sequencing. We apply this new algorithm, dubbed CCS2, to the characterization of the HIV-1 K103N drug-resistance associated mutation, which is both important clinically, and represents a challenge due to regional sequence context. A mutation was introduced into the 3rd position of amino acid position 103 (A>C substitution) of the RT gene on a pNL4-3 backbone by site-directed mutagenesis. Regions spanning ~1,300 bp were PCR amplified from both the non-mutated and mutant (K103N) plasmids, and were sequenced individually and as a 50:50 mixture. Sequencing data were analyzed using the new CCS2 algorithm, which uses a fully-generative probabilistic model of our SMRT Sequencing process to polish consensus sequences to arbitrarily high accuracy. This result, previously demonstrated for multi-molecule consensus sequences with the Quiver algorithm, is made possible by incorporating per-Zero Mode Waveguide (ZMW) characteristics, thus accounting for the intrinsic changes in the sequencing process that are unique to each ZMW. With CCS2, we are able to achieve a per-read empirical quality of QV30 with 19X coverage. This yields ~5000 1.3 kb consensus sequences with a collective empirical quality of ~QV40. Additionally, we demonstrate a 0% miscall rate in both unmixed samples, and estimate a 48:52% frequency for the K103N mutation in the mixed sample, consistent with data produced by orthogonal platforms.


June 1, 2021  |  

Targeted sequencing and chromosomal haplotype assembly using TLA and SMRT Sequencing

With the increasing availability of whole-genome sequencing, haplotype reconstruction of individual genomes, or haplotype assembly, remains unsolved. Like the de novo genome assembly problem, haplotype assembly is greatly simplified by having more long-range information. The Targeted Locus Amplification (TLA) technology from Cergentis has the unique capability of targeting a specific region of the genome using a single primer pair and yielding ~2 kb DNA circles that are comprised of ~500 bp fragments. Fragments from the same circle come from the same haplotype and follow an exponential decay in distance from the target region, with a span that reaches the multi-megabase range. Here, we apply TLA to the BRCA1 gene on NA12878 and then sequence the resulting 2 kb circles on a PacBio RS II. The multiple fragments per circle were iteratively mapped to hg19 and then haplotype assembled using HAPCUT. We show that the 80 kb length of BRCA1 is represented by a single haplotype block, which was validated against GIAB data. We then explored chromosomal-scale haplotype assembly by combining these data with whole genome shotgun PacBio long reads, and demonstrate haplotype blocks approaching the length of chromosome 17 on which BRCA1 lies. Finally, by performing TLA without the amplification step and size selecting for reads >5 kb to maximize the number of fragments per read, we target whole genome haplotype assembly across all chromosomes.


June 1, 2021  |  

Multiplexing strategies for microbial whole genome SMRT Sequencing

The increased throughput of the RS II and Sequel Systems enables multiple microbes to be sequenced on a single SMRT Cell. This multiplexing can be readily achieved by simply incorporating a unique barcode for each microbe into the SMRTbell adapters after shearing genomic DNA using a streamlined library construction process. Incorporating a barcode without the requirement for PCR amplification prevents the loss of epigenetic information (e.g., methylation signatures), and the generation of chimeric sequences, while the modified protocol eliminates the need to build several individual SMRTbell libraries. We multiplexed up to 8 unique strains of H. pylori. Each strain was sheared, and processed through adapter ligation in a single, addition only reaction. The barcoded strains were then pooled in equimolar quantities, and processed through the remainder of the library preparation and purification steps. We demonstrate successful de novo microbial assembly and epigenetic analysis from all multiplexes (2 through 8-plex) using standard tools within SMRT Link Analysis using data generated from a single SMRTbell library, run on a single SMRT Cell. This process facilitates the sequencing of multiple microbial genomes in a single day, greatly increasing throughput and reducing costs per genome assembly.


June 1, 2021  |  

Candidate gene screening using long-read sequencing

We have developed several candidate gene screening applications for both Neuromuscular and Neurological disorders. The power behind these applications comes from the use of long-read sequencing. It allows us to access previously unresolvable and even unsequencable genomic regions. SMRT Sequencing offers uniform coverage, a lack of sequence context bias, and very high accuracy. In addition, it is also possible to directly detect epigenetic signatures and characterize full-length gene transcripts through assembly-free isoform sequencing. In addition to calling the bases, SMRT Sequencing uses the kinetic information from each nucleotide to distinguish between modified and native bases.


June 1, 2021  |  

Application-specific barcoding strategies for SMRT Sequencing

The increased sequencing throughput creates a need for multiplexing for several applications. We are here detailing different barcoding strategies for microbial sequencing, targeted sequencing, Iso-Seq full-length isoform sequencing, and Roche NimbleGen’s target enrichment method.


June 1, 2021  |  

An improved circular consensus algorithm with an application to detect HIV-1 Drug Resistance Associated Mutations (DRAMs)

Scientists who require confident resolution of heterogeneous populations across complex regions have been unable to transition to short-read sequencing methods. They continue to depend on Sanger sequencing despite its cost and time inefficiencies. Here we present a new redesigned algorithm that allows the generation of circular consensus sequences (CCS) from individual SMRT Sequencing reads. With this new algorithm, dubbed CCS2, it is possible to reach high quality across longer insert lengths at a lower cost and higher throughput than Sanger sequencing. We applied CCS2 to the characterization of the HIV-1 K103N drug-resistance associated mutation in both clonal and patient samples. This particular DRAM has previously proved to be clinically relevant, but challenging to characterize due to regional sequence context. First, a mutation was introduced into the 3rd position of amino acid position 103 (A>C substitution) of the RT gene on a pNL4-3 backbone by site-directed mutagenesis. Regions spanning ~1.3 kb were PCR amplified from both the non-mutated and mutant (K103N) plasmids, and were sequenced individually and as a 50:50 mixture. Additionally, the proviral reservoir of a subject with known dates of virologic failure of an Efavirenz-based regimen and with documented emergence of drug resistant (K103N) viremia was sequenced at several time points as a proof-of-concept study to determine the kinetics of retention and decay of K103N.Sequencing data were analyzed using the new CCS2 algorithm, which uses a fully-generative probabilistic model of our SMRT Sequencing process to polish consensus sequences to high accuracy. With CCS2, we are able to achieve a per-read empirical quality of QV30 (99.9% accuracy) at 19X coverage. A total of ~5000 1.3 kb consensus sequences with a collective empirical quality of ~QV40 (99.99%) were obtained for each sample. We demonstrate a 0% miscall rate in both unmixed control samples, and estimate a 48:52 frequency for the K103N mutation in the mixed (50:50) plasmid sample, consistent with data produced by orthogonal platforms. Additionally, the K103N escape variant was only detected in proviral samples from time points subsequent (19%) to the emergence of drug resistant viremia. This tool might be used to monitor the HIV reservoir for stable evolutionary changes throughout infection.


June 1, 2021  |  

Multiplexing strategies for microbial whole genome SMRT Sequencing

As the throughput of the PacBio Systems continues to increase, so has the desire to fully utilize SMRT Cell sequencing capacity to multiplex microbes for whole genome sequencing. Multiplexing is readily achieved by incorporating a unique barcode for each microbe into the SMRTbell adapters and using a streamlined library preparation process. Incorporating barcodes without PCR amplification prevents the loss of epigenetic information and the generation of chimeric sequences, while eliminating the need to generate separate SMRTbell libraries. We multiplexed the genomes of up to 8 unique strains of H. pylori. Each genome was sheared and processed through adapter ligation in a single, addition-only reaction. The barcoded samples were pooled in equimolar quantities and a single SMRTbell library was prepared. We demonstrate successful de novo microbial assembly from all multiplexes tested (2- through 8-plex) using data generated from a single SMRTbell library, run on a single SMRT Cell with the PacBio RS II, and analyzed with standard SMRT Analysis assembly methods. This strategy was successful using both small (1.6 Mb, H. pylori) and medium (5 Mb, E. coli) genomes. This protocol facilitates the sequencing of multiple microbial genomes in a single run, greatly increasing throughput and reducing costs per genome.


June 1, 2021  |  

High-quality de novo genome assembly and intra-individual mitochondrial instability in the critically endangered kakapo

The kakapo (Strigops habroptila) is a large, flightless parrot endemic to New Zealand. It is highly endangered with only ~150 individuals remaining, and intensive conservation efforts are underway to save this iconic species from extinction. These include genetic studies to understand critical genes relevant to fertility, adaptation and disease resistance, and genetic diversity across the remaining population for future breeding program decisions. To aid with these efforts, we have generated a high-quality de novo genome assembly using PacBio long-read sequencing. Using the new diploid-aware FALCON-Unzip assembler, the resulting genome of 1.06 Gb has a contig N50 of 5.6 Mb (largest contig 29.3 Mb), >350-times more contiguous compared to a recent short-read assembly of a closely related parrot (kea) species. We highlight the benefits of the higher contiguity and greater completeness of the kakapo genome assembly through examples of fully resolved genes important in wildlife conservation (contrasted with fragmented and incomplete gene resolution in short-read assemblies), in some cases even providing sequence for regions orthologous to gaps of missing sequence in the chicken reference genome. We also highlight the complete resolution of the kakapo mitochondrial genome, fully containing the mitochondrial control region which is missing from the previous dedicated kakapomitochondrial genome NCBI entry. For this region, we observed a marked heterogeneity in the number of tandem repeats in different mtDNAmolecules from a single bird tissue, highlighting the enhanced molecular resolution uniquely afforded by long-read, single-molecule PacBio sequencing.


June 1, 2021  |  

Full-length cDNA sequencing of prokaryotic transcriptome and metatranscriptome samples

Next-generation sequencing has become a useful tool for studying transcriptomes. However, these methods typically rely on sequencing short fragments of cDNA, then attempting to assemble the pieces into full-length transcripts. Here, we describe a method that uses PacBio long reads to sequence full-length cDNAs from individual transcriptomes and metatranscriptome samples. We have adapted the PacBio Iso-Seq protocol for use with prokaryotic samples by incorporating RNA polyadenylation and rRNA-depletion steps. In conjunction with SMRT Sequencing, which has average readlengths of 10-15 kb, we are able to sequence entire transcripts, including polycistronic RNAs, in a single read. Here, we show full-length bacterial transcriptomes with the ability to visualize transcription of operons. In the area of metatranscriptomics, long reads reveal unambiguous gene sequences without the need for post-sequencing transcript assembly. We also show full-length bacterial transcripts sequenced after being treated with NEB’s Cappable-Seq, which is an alternative method for depleting rRNA and enriching for full-length transcripts with intact 5’ ends. Combining Cappable-Seq with PacBio long reads allows for the detection of transcription start sites, with the additional benefit of sequencing entire transcripts.


June 1, 2021  |  

The role of androgen receptor variant AR-V9 in prostate cancer

The expression of androgen receptor (AR) variants is a frequent, yet poorly-understood mechanism of clinical resistance to AR-targeted therapy for castration-resistant prostate cancer (CRPC). Among the multiple AR variants expressed in CRPC, AR-V7 is considered the most clinically-relevant AR variant due to broad expression in CRPC, correlations of AR-V7 expression with clinical resistance, and growth inhibition when AR-V7 is knocked down in CRPC models. Therefore, efforts are under way to develop strategies for monitoring and inhibiting AR-V7 in castration-resistant prostate cancer (CRPC). The aim of this study was to understand whether other AR variants are co-expressed with AR-V7 and promote resistance to AR-targeted therapies. To test this, we utilized RNA-seq to characterize AR expression in CRPC models. RNA-seq revealed the frequent coexpression of AR-V9 and AR-V7 in multiple CRPC models and metastases. Furthermore, long-read single-molecule real-time (SMRT) sequencing of AR isoforms revealed that AR-V7 and AR-V9 shared a common 3’terminal cryptic exon. To test this, we knocked down AR-V7 in prostate cancer cell lines and confirmed that AR-V9 mRNA and protein expression were also impacted. In reporter assays with AR-responsive promoters, AR-V9 functioned as a constitutive activator of androgen/AR signaling. Similarly, infection of AR-V9 lentiviral construct in LNCaP cells induced androgen-independent cell proliferation. In conclusion, these data implicate co-expression of AR-V9 with AR-V7 as an important component of constitutive AR signaling and therapeutic resistance in CRPC.


April 21, 2020  |  

Characterization of Reference Materials for Genetic Testing of CYP2D6 Alleles: A GeT-RM Collaborative Project.

Pharmacogenetic testing increasingly is available from clinical and research laboratories. However, only a limited number of quality control and other reference materials currently are available for the complex rearrangements and rare variants that occur in the CYP2D6 gene. To address this need, the Division of Laboratory Systems, CDC-based Genetic Testing Reference Material Coordination Program, in collaboration with members of the pharmacogenetic testing and research communities and the Coriell Cell Repositories (Camden, NJ), has characterized 179 DNA samples derived from Coriell cell lines. Testing included the recharacterization of 137 genomic DNAs that were genotyped in previous Genetic Testing Reference Material Coordination Program studies and 42 additional samples that had not been characterized previously. DNA samples were distributed to volunteer testing laboratories for genotyping using a variety of commercially available and laboratory-developed tests. These publicly available samples will support the quality-assurance and quality-control programs of clinical laboratories performing CYP2D6 testing.Published by Elsevier Inc.


April 21, 2020  |  

Cultured Epidermal Autografts from Clinically Revertant Skin as a Potential Wound Treatment for Recessive Dystrophic Epidermolysis Bullosa.

Inherited skin disorders have been reported recently to have sporadic normal-looking areas, where a portion of the keratinocytes have recovered from causative gene mutations (revertant mosaicism). We observed a case of recessive dystrophic epidermolysis bullosa treated with cultured epidermal autografts (CEAs), whose CEA-grafted site remained epithelized for 16 years. We proved that the CEA product and the grafted area included cells with revertant mosaicism. Based on these findings, we conducted an investigator-initiated clinical trial of CEAs from clinically revertant skin for recessive dystrophic epidermolysis bullosa. The donor sites were analyzed by genetic analysis, immunofluorescence, electron microscopy, and quantification of the reverted mRNA with deep sequencing. The primary endpoint was the ulcer epithelization rate per patient at 4 weeks after the last CEA application. Three patients with recessive dystrophic epidermolysis bullosa with 8 ulcers were enrolled, and the epithelization rate for each patient at the primary endpoint was 87.7%, 100%, and 57.0%, respectively. The clinical effects were found to persist for at least 76 weeks after CEA transplantation. One of the three patients had apparent revertant mosaicism in the donor skin and in the post-transplanted area. CEAs from clinically normal skin are a potentially well-tolerated treatment for recessive dystrophic epidermolysis bullosa.Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.


April 21, 2020  |  

An improved pig reference genome sequence to enable pig genetics and genomics research

The domestic pig (Sus scrofa) is important both as a food source and as a biomedical model with high anatomical and immunological similarity to humans. The draft reference genome (Sscrofa10.2) represented a purebred female pig from a commercial pork production breed (Duroc), and was established using older clone-based sequencing methods. The Sscrofa10.2 assembly was incomplete and unresolved redundancies, short range order and orientation errors and associated misassembled genes limited its utility. We present two highly contiguous chromosome-level genome assemblies created with more recent long read technologies and a whole genome shotgun strategy, one for the same Duroc female (Sscrofa11.1) and one for an outbred, composite breed male animal commonly used for commercial pork production (USMARCv1.0). Both assemblies are of substantially higher (>90-fold) continuity and accuracy compared to the earlier reference, and the availability of two independent assemblies provided an opportunity to identify large-scale variants and to error-check the accuracy of representation of the genome. We propose that the improved Duroc breed assembly (Sscrofa11.1) become the reference genome for genomic research in pigs.


April 21, 2020  |  

An Outbreak of KPC-Producing Klebsiella pneumoniae Linked with an Index Case of Community-Acquired KPC-Producing Isolate: Epidemiological Investigation and Whole Genome Sequencing Analysis.

Aims: A hospital outbreak of Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae (KPN) linked with an index case of community-acquired infection occurred in an urban tertiary care hospital in Seoul, South Korea. Therefore, we performed an outbreak investigation and whole genome sequencing (WGS) analysis to trace the outbreak and investigate the molecular characteristics of the isolates. Results: From October 2014 to January 2015, we identified a cluster of three patients in the neurosurgery ward with sputum cultures positive for carbapenem-resistant KPN. An epidemiological investigation, including pulsed-field gel electrophoresis analysis was performed to trace the origins of this outbreak. The index patient’s infection was community acquired. Active surveillance cultures using perirectal swabbing from exposed patients, identified one additional patient with KPC-producing KPN colonization. WGS analyses using PacBio RSII instruments were performed for four linked isolates. WGS revealed a genetic linkage of the four isolates belonging to the same sequence type (ST307). All KPN isolates harbored conjugative resistance plasmids, which has blaKPC-2 carbapenemase genes contained within the Tn4401 “a” isoform and other resistance genes. However, WGS showed only three isolates among four KPC-producing KPN were originated from a common origin. Conclusions: This report demonstrates the challenge that KPC-2-producing KPN with the conjugative resistance plasmid may spread not only in hospitals but also in community, and WGS can help to accurately characterize the outbreak.


April 21, 2020  |  

Comparative genomics reveals unique wood-decay strategies and fruiting body development in the Schizophyllaceae.

Agaricomycetes are fruiting body-forming fungi that produce some of the most efficient enzyme systems to degrade wood. Despite decades-long interest in their biology, the evolution and functional diversity of both wood-decay and fruiting body formation are incompletely known. We performed comparative genomic and transcriptomic analyses of wood-decay and fruiting body development in Auriculariopsis ampla and Schizophyllum commune (Schizophyllaceae), species with secondarily simplified morphologies, an enigmatic wood-decay strategy and weak pathogenicity to woody plants. The plant cell wall-degrading enzyme repertoires of Schizophyllaceae are transitional between those of white rot species and less efficient wood-degraders such as brown rot or mycorrhizal fungi. Rich repertoires of suberinase and tannase genes were found in both species, with tannases restricted to Agaricomycetes that preferentially colonize bark-covered wood, suggesting potential complementation of their weaker wood-decaying abilities and adaptations to wood colonization through the bark. Fruiting body transcriptomes revealed a high rate of divergence in developmental gene expression, but also several genes with conserved expression patterns, including novel transcription factors and small-secreted proteins, some of the latter which might represent fruiting body effectors. Taken together, our analyses highlighted novel aspects of wood-decay and fruiting body development in an important family of mushroom-forming fungi. © 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.