fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Tuesday, June 1, 2021

An improved circular consensus algorithm with an application to detection of HIV-1 Drug-Resistance Associated Mutations (DRAMs)

Scientists who require confident resolution of heterogeneous populations across complex regions have been unable to transition to short-read sequencing methods. They continue to depend on Sanger Sequencing despite its cost and time inefficiencies. Here we present a new redesigned algorithm that allows the generation of circular consensus sequences (CCS) from individual SMRT Sequencing reads. With this new algorithm, dubbed CCS2, it is possible to reach arbitrarily high quality across longer insert lengths at a lower cost and higher throughput than Sanger Sequencing. We apply this new algorithm, dubbed CCS2, to the characterization of the HIV-1 K103N drug-resistance associated mutation, which…

Read More »

Tuesday, June 1, 2021

Targeted sequencing and chromosomal haplotype assembly using TLA and SMRT Sequencing

With the increasing availability of whole-genome sequencing, haplotype reconstruction of individual genomes, or haplotype assembly, remains unsolved. Like the de novo genome assembly problem, haplotype assembly is greatly simplified by having more long-range information. The Targeted Locus Amplification (TLA) technology from Cergentis has the unique capability of targeting a specific region of the genome using a single primer pair and yielding ~2 kb DNA circles that are comprised of ~500 bp fragments. Fragments from the same circle come from the same haplotype and follow an exponential decay in distance from the target region, with a span that reaches the multi-megabase…

Read More »

Tuesday, June 1, 2021

Multiplexing strategies for microbial whole genome SMRT Sequencing

The increased throughput of the RS II and Sequel Systems enables multiple microbes to be sequenced on a single SMRT Cell. This multiplexing can be readily achieved by simply incorporating a unique barcode for each microbe into the SMRTbell adapters after shearing genomic DNA using a streamlined library construction process. Incorporating a barcode without the requirement for PCR amplification prevents the loss of epigenetic information (e.g., methylation signatures), and the generation of chimeric sequences, while the modified protocol eliminates the need to build several individual SMRTbell libraries. We multiplexed up to 8 unique strains of H. pylori. Each strain was…

Read More »

Tuesday, June 1, 2021

Candidate gene screening using long-read sequencing

We have developed several candidate gene screening applications for both Neuromuscular and Neurological disorders. The power behind these applications comes from the use of long-read sequencing. It allows us to access previously unresolvable and even unsequencable genomic regions. SMRT Sequencing offers uniform coverage, a lack of sequence context bias, and very high accuracy. In addition, it is also possible to directly detect epigenetic signatures and characterize full-length gene transcripts through assembly-free isoform sequencing. In addition to calling the bases, SMRT Sequencing uses the kinetic information from each nucleotide to distinguish between modified and native bases.

Read More »

Tuesday, June 1, 2021

Application-specific barcoding strategies for SMRT Sequencing

The increased sequencing throughput creates a need for multiplexing for several applications. We are here detailing different barcoding strategies for microbial sequencing, targeted sequencing, Iso-Seq full-length isoform sequencing, and Roche NimbleGen’s target enrichment method.

Read More »

Tuesday, June 1, 2021

An improved circular consensus algorithm with an application to detect HIV-1 Drug Resistance Associated Mutations (DRAMs)

Scientists who require confident resolution of heterogeneous populations across complex regions have been unable to transition to short-read sequencing methods. They continue to depend on Sanger sequencing despite its cost and time inefficiencies. Here we present a new redesigned algorithm that allows the generation of circular consensus sequences (CCS) from individual SMRT Sequencing reads. With this new algorithm, dubbed CCS2, it is possible to reach high quality across longer insert lengths at a lower cost and higher throughput than Sanger sequencing. We applied CCS2 to the characterization of the HIV-1 K103N drug-resistance associated mutation in both clonal and patient samples.…

Read More »

Tuesday, June 1, 2021

Multiplexing strategies for microbial whole genome SMRT Sequencing

As the throughput of the PacBio Systems continues to increase, so has the desire to fully utilize SMRT Cell sequencing capacity to multiplex microbes for whole genome sequencing. Multiplexing is readily achieved by incorporating a unique barcode for each microbe into the SMRTbell adapters and using a streamlined library preparation process. Incorporating barcodes without PCR amplification prevents the loss of epigenetic information and the generation of chimeric sequences, while eliminating the need to generate separate SMRTbell libraries. We multiplexed the genomes of up to 8 unique strains of H. pylori. Each genome was sheared and processed through adapter ligation in…

Read More »

Tuesday, June 1, 2021

High-quality de novo genome assembly and intra-individual mitochondrial instability in the critically endangered kakapo

The kakapo (Strigops habroptila) is a large, flightless parrot endemic to New Zealand. It is highly endangered with only ~150 individuals remaining, and intensive conservation efforts are underway to save this iconic species from extinction. These include genetic studies to understand critical genes relevant to fertility, adaptation and disease resistance, and genetic diversity across the remaining population for future breeding program decisions. To aid with these efforts, we have generated a high-quality de novo genome assembly using PacBio long-read sequencing. Using the new diploid-aware FALCON-Unzip assembler, the resulting genome of 1.06 Gb has a contig N50 of 5.6 Mb (largest…

Read More »

Tuesday, June 1, 2021

Full-length cDNA sequencing of prokaryotic transcriptome and metatranscriptome samples

Next-generation sequencing has become a useful tool for studying transcriptomes. However, these methods typically rely on sequencing short fragments of cDNA, then attempting to assemble the pieces into full-length transcripts. Here, we describe a method that uses PacBio long reads to sequence full-length cDNAs from individual transcriptomes and metatranscriptome samples. We have adapted the PacBio Iso-Seq protocol for use with prokaryotic samples by incorporating RNA polyadenylation and rRNA-depletion steps. In conjunction with SMRT Sequencing, which has average readlengths of 10-15 kb, we are able to sequence entire transcripts, including polycistronic RNAs, in a single read. Here, we show full-length bacterial…

Read More »

Tuesday, June 1, 2021

The role of androgen receptor variant AR-V9 in prostate cancer

The expression of androgen receptor (AR) variants is a frequent, yet poorly-understood mechanism of clinical resistance to AR-targeted therapy for castration-resistant prostate cancer (CRPC). Among the multiple AR variants expressed in CRPC, AR-V7 is considered the most clinically-relevant AR variant due to broad expression in CRPC, correlations of AR-V7 expression with clinical resistance, and growth inhibition when AR-V7 is knocked down in CRPC models. Therefore, efforts are under way to develop strategies for monitoring and inhibiting AR-V7 in castration-resistant prostate cancer (CRPC). The aim of this study was to understand whether other AR variants are co-expressed with AR-V7 and promote…

Read More »

Tuesday, April 21, 2020

Characterization of Reference Materials for Genetic Testing of CYP2D6 Alleles: A GeT-RM Collaborative Project.

Pharmacogenetic testing increasingly is available from clinical and research laboratories. However, only a limited number of quality control and other reference materials currently are available for the complex rearrangements and rare variants that occur in the CYP2D6 gene. To address this need, the Division of Laboratory Systems, CDC-based Genetic Testing Reference Material Coordination Program, in collaboration with members of the pharmacogenetic testing and research communities and the Coriell Cell Repositories (Camden, NJ), has characterized 179 DNA samples derived from Coriell cell lines. Testing included the recharacterization of 137 genomic DNAs that were genotyped in previous Genetic Testing Reference Material Coordination…

Read More »

Tuesday, April 21, 2020

Cultured Epidermal Autografts from Clinically Revertant Skin as a Potential Wound Treatment for Recessive Dystrophic Epidermolysis Bullosa.

Inherited skin disorders have been reported recently to have sporadic normal-looking areas, where a portion of the keratinocytes have recovered from causative gene mutations (revertant mosaicism). We observed a case of recessive dystrophic epidermolysis bullosa treated with cultured epidermal autografts (CEAs), whose CEA-grafted site remained epithelized for 16 years. We proved that the CEA product and the grafted area included cells with revertant mosaicism. Based on these findings, we conducted an investigator-initiated clinical trial of CEAs from clinically revertant skin for recessive dystrophic epidermolysis bullosa. The donor sites were analyzed by genetic analysis, immunofluorescence, electron microscopy, and quantification of the…

Read More »

Tuesday, April 21, 2020

An improved pig reference genome sequence to enable pig genetics and genomics research

The domestic pig (Sus scrofa) is important both as a food source and as a biomedical model with high anatomical and immunological similarity to humans. The draft reference genome (Sscrofa10.2) represented a purebred female pig from a commercial pork production breed (Duroc), and was established using older clone-based sequencing methods. The Sscrofa10.2 assembly was incomplete and unresolved redundancies, short range order and orientation errors and associated misassembled genes limited its utility. We present two highly contiguous chromosome-level genome assemblies created with more recent long read technologies and a whole genome shotgun strategy, one for the same Duroc female (Sscrofa11.1) and…

Read More »

Tuesday, April 21, 2020

An Outbreak of KPC-Producing Klebsiella pneumoniae Linked with an Index Case of Community-Acquired KPC-Producing Isolate: Epidemiological Investigation and Whole Genome Sequencing Analysis.

Aims: A hospital outbreak of Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae (KPN) linked with an index case of community-acquired infection occurred in an urban tertiary care hospital in Seoul, South Korea. Therefore, we performed an outbreak investigation and whole genome sequencing (WGS) analysis to trace the outbreak and investigate the molecular characteristics of the isolates. Results: From October 2014 to January 2015, we identified a cluster of three patients in the neurosurgery ward with sputum cultures positive for carbapenem-resistant KPN. An epidemiological investigation, including pulsed-field gel electrophoresis analysis was performed to trace the origins of this outbreak. The index patient’s…

Read More »

Tuesday, April 21, 2020

Comparative genomics reveals unique wood-decay strategies and fruiting body development in the Schizophyllaceae.

Agaricomycetes are fruiting body-forming fungi that produce some of the most efficient enzyme systems to degrade wood. Despite decades-long interest in their biology, the evolution and functional diversity of both wood-decay and fruiting body formation are incompletely known. We performed comparative genomic and transcriptomic analyses of wood-decay and fruiting body development in Auriculariopsis ampla and Schizophyllum commune (Schizophyllaceae), species with secondarily simplified morphologies, an enigmatic wood-decay strategy and weak pathogenicity to woody plants. The plant cell wall-degrading enzyme repertoires of Schizophyllaceae are transitional between those of white rot species and less efficient wood-degraders such as brown rot or mycorrhizal fungi.…

Read More »

1 2 3 4 68

Subscribe for blog updates:

Archives