Menu
September 22, 2019

Multi-omics approach identifies novel pathogen-derived prognostic biomarkers in patients with Pseudomonas aeruginosa bloodstream infection

Pseudomonas aeruginosa is a human pathogen that causes health-care associated blood stream infections (BSI). Although P. aeruginosa BSI are associated with high mortality rates, the clinical relevance of pathogen-derived prognostic biomarker to identify patients at risk for unfavorable outcome remains largely unexplored. We found novel pathogen-derived prognostic biomarker candidates by applying a multi-omics approach on a multicenter sepsis patient cohort. Multi-level Cox regression was used to investigate the relation between patient characteristics and pathogen features (2298 accessory genes, 1078 core protein levels, 107 parsimony-informative variations in reported virulence factors) with 30-day mortality. Our analysis revealed that presence of the helP gene encoding a putative DEAD-box helicase was independently associated with a fatal outcome (hazard ratio 2.01, p = 0.05). helP is located within a region related to the pathogenicity island PAPI-1 in close proximity to a pil gene cluster, which has been associated with horizontal gene transfer. Besides helP, elevated protein levels of the bacterial flagellum protein FliL (hazard ratio 3.44, p < 0.001) and of a bacterioferritin-like protein (hazard ratio 1.74, p = 0.003) increased the risk of death, while high protein levels of a putative aminotransferase were associated with an improved outcome (hazard ratio 0.12, p < 0.001). The prognostic potential of biomarker candidates and clinical factors was confirmed with different machine learning approaches using training and hold-out datasets. The helP genotype appeared the most attractive biomarker for clinical risk stratification due to its relevant predictive power and ease of detection.


September 22, 2019

Genome-wide comparison reveals a probiotic strain Lactococcus lactis WFLU12 isolated from the gastrointestinal tract of olive flounder (Paralichthys Olivaceus) harboring genes supporting probiotic action.

Our previous study has shown that dietary supplementation with Lactococcus lactis WFLU12 can enhance the growth of olive flounder and its resistance against streptococcal infection. The objective of the present study was to use comparative genomics tools to investigate genomic characteristics of strain WFLU12 and the presence of genes supporting its probiotic action using sequenced genomes of L. lactis strains. Dispensable and singleton genes of strain WFLU12 were found to be more enriched in genes associated with metabolism (e.g., energy production and conversion, and carbohydrate transport and metabolism) than pooled dispensable and singleton genes in other L. lactis strains, reflecting WFLU12 strain-specific ecosystem origin and its ability to metabolize different energy sources. Strain WFLU12 produced antimicrobial compounds that could inhibit several bacterial fish pathogens. It possessed the nisin gene cluster (nisZBTCIPRKFEG) and genes encoding lysozyme and colicin V. However, only three other strains (CV56, IO-1, and SO) harbor a complete nisin gene cluster. We also found that L. lactis WFLU12 possessed many other important functional genes involved in stress responses to the gastrointestinal tract environment, dietary energy extraction, and metabolism to support the probiotic action of this strain found in our previous study. This strongly indicates that not all L. lactis strains can be used as probiotics. This study highlights comparative genomics approaches as very useful and powerful tools to select probiotic candidates and predict their probiotic effects.


September 22, 2019

Genomic analysis of a pan-resistant isolate of Klebsiella pneumoniae, United States 2016.

Antimicrobial resistance is a threat to public health globally and leads to an estimated 23,000 deaths annually in the United States alone. Here, we report the genomic characterization of an unusualKlebsiella pneumoniae, nonsusceptible to all 26 antibiotics tested, that was isolated from a U.S.The isolate harbored four known beta-lactamase genes, including plasmid-mediatedblaNDM-1andblaCMY-6, as well as chromosomalblaCTX-M-15andblaSHV-28, which accounted for resistance to all beta-lactams tested. In addition, sequence analysis identified mechanisms that could explain all other reported nonsusceptibility results, including nonsusceptibility to colistin, tigecycline, and chloramphenicol. Two plasmids, IncA/C2 and IncFIB, were closely related to mobile elements described previously and isolated from Gram-negative bacteria from China, Nepal, India, the United States, and Kenya, suggesting possible origins of the isolate and plasmids. This is one of the firstK. pneumoniaeisolates in the United States to have been reported to the Centers for Disease Control and Prevention (CDC) as nonsusceptible to all drugs tested, including all beta-lactams, colistin, and tigecycline. IMPORTANCE Antimicrobial resistance is a major public health threat worldwide. Bacteria that are nonsusceptible or resistant to all antimicrobials available are of major concern to patients and the public because of lack of treatment options and potential for spread. AKlebsiella pneumoniaestrain that was nonsusceptible to all tested antibiotics was isolated from a U.S.Mechanisms that could explain all observed phenotypic antimicrobial resistance phenotypes, including resistance to colistin and beta-lactams, were identified through whole-genome sequencing. The large variety of resistance determinants identified demonstrates the usefulness of whole-genome sequencing for detecting these genes in an outbreak response. Sequencing of isolates with rare and unusual phenotypes can provide information on how these extremely resistant isolates develop, including whether resistance is acquired on mobile elements or accumulated through chromosomal mutations. Moreover, this provides further insight into not only detecting these highly resistant organisms but also preventing their spread.


September 22, 2019

Characterization of two novel bacteriophages infecting multidrug-resistant (MDR) Acinetobacter baumannii and evaluation of their therapeutic efficacy in vivo.

Acinetobacter baumannii is emerging as a challenging nosocomial pathogen due to its rapid evolution of antibiotic resistance. We report characterization of two novel bacteriophages, PBAB08 and PBAB25, infecting clinically isolated, multidrug-resistant (MDR) A. baumannii strains. Both phages belonged to Myoviridae of Caudovirales as their morphology observed under an electron microscope. Their genomes were double stranded linear DNAs of 42,312 base pairs and 40,260 base pairs, respectively. The two phages were distinct from known Acinetobacter phages when whole genome sequences were compared. PBAB08 showed a 99% similarity with 57% sequence coverage to phage AB1 and PBAB25 showed a 97% similarity with 78% sequence coverage to phage IME_AB3. BLASTN significant alignment coverage of all other known phages were <30%. Seventy six and seventy genes encoding putative phage proteins were found in the genomes of PBAB08 and PBAB25, respectively. Their genomic organizations and sequence similarities were consistent with the modular theory of phage evolution. Therapeutic efficacy of a phage cocktail containing the two and other phages were evaluated in a mice model with nasal infection of MDR A. baumannii. Mice treated with the phage cocktail showed a 2.3-fold higher survival rate than those untreated in 7 days post infection. In addition, 1/100 reduction of the number of A. baumannii in the lung of the mice treated with the phage cocktail was observed. Also, inflammatory responses of mice which were injected with the phage cocktail by intraperitoneal, intranasal, or oral route was investigated. Increase in serum cytokine was minimal regardless of the injection route. A 20% increase in IgE production was seen in intraperitoneal injection route, but not in other routes. Thus, the cocktail containing the two newly isolated phages could serve as a potential candidate for therapeutic interventions to treat A. baummannii infections.


September 22, 2019

Inferring the minimal genome of Mesoplasma florum by comparative genomics and transposon mutagenesis.

The creation and comparison of minimal genomes will help better define the most fundamental mechanisms supporting life. Mesoplasma florum is a near-minimal, fast-growing, nonpathogenic bacterium potentially amenable to genome reduction efforts. In a comparative genomic study of 13 M. florum strains, including 11 newly sequenced genomes, we have identified the core genome and open pangenome of this species. Our results show that all of the strains have approximately 80% of their gene content in common. Of the remaining 20%, 17% of the genes were found in multiple strains and 3% were unique to any given strain. On the basis of random transposon mutagenesis, we also estimated that ~290 out of 720 genes are essential for M. florum L1 in rich medium. We next evaluated different genome reduction scenarios for M. florum L1 by using gene conservation and essentiality data, as well as comparisons with the first working approximation of a minimal organism, Mycoplasma mycoides JCVI-syn3.0. Our results suggest that 409 of the 473 M. mycoides JCVI-syn3.0 genes have orthologs in M. florum L1. Conversely, 57 putatively essential M. florum L1 genes have no homolog in M. mycoides JCVI-syn3.0. This suggests differences in minimal genome compositions, even for these evolutionarily closely related bacteria. IMPORTANCE The last years have witnessed the development of whole-genome cloning and transplantation methods and the complete synthesis of entire chromosomes. Recently, the first minimal cell, Mycoplasma mycoides JCVI-syn3.0, was created. Despite these milestone achievements, several questions remain to be answered. For example, is the composition of minimal genomes virtually identical in phylogenetically related species? On the basis of comparative genomics and transposon mutagenesis, we investigated this question by using an alternative model, Mesoplasma florum, that is also amenable to genome reduction efforts. Our results suggest that the creation of additional minimal genomes could help reveal different gene compositions and strategies that can support life, even within closely related species.


September 22, 2019

The genome of Ectocarpus subulatus highlights unique mechanisms for stress tolerance in brown algae

Brown algae are multicellular photosynthetic organisms belonging to the stramenopile lineage. They are successful colonizers of marine rocky shores world-wide. The genus Ectocarpus, and especially strain Ec32, has been established as a genetic and genomic model for brown algae. A related species, Ectocarpus subulatus Kuetzing, is characterized by its high tolerance of abiotic stress. Here we present the genome and metabolic network of a haploid male strain of E. subulatus, establishing it as a comparative model to study the genomic bases of stress tolerance in Ectocarpus. Our analyses indicate that E. subulatus has separated from Ectocarpus sp. Ec32 via allopatric speciation. Since this event, its genome has been shaped by the activity of viruses and large retrotransposons, which in the case of chlorophyll-binding proteins, may be related to the expansion of this gene family. We have identified a number of further genes that we suspect to contribute to stress tolerance in E. subulatus, including an expanded family of heat shock proteins, the reduction of genes involved in the production of halogenated defense compounds, and the presence of fewer cell wall polysaccharide-modifying enzymes. However, 96% of genes that differed between the two examined Ectocarpus species, as well as 90% of genes under positive selection, were found to be lineage-specific and encode proteins of unknown function. This underlines the uniqueness of brown algae with respect to their stress tolerance mechanisms as well as the significance of establishing E. subulatus as a comparative model for future functional studies.


September 22, 2019

Genomic structural variations affecting virulence during clonal expansion of Pseudomonas syringae pv. actinidiae biovar 3 in Europe.

Pseudomonas syringae pv. actinidiae (Psa) biovar 3 caused pandemic bacterial canker of Actinidia chinensis and Actinidia deliciosa since 2008. In Europe, the disease spread rapidly in the kiwifruit cultivation areas from a single introduction. In this study, we investigated the genomic diversity of Psa biovar 3 strains during the primary clonal expansion in Europe using single molecule real-time (SMRT), Illumina and Sanger sequencing technologies. We recorded evidences of frequent mobilization and loss of transposon Tn6212, large chromosome inversions, and ectopic integration of IS sequences (remarkably ISPsy31, ISPsy36, and ISPsy37). While no phenotype change associated with Tn6212 mobilization could be detected, strains CRAFRU 12.29 and CRAFRU 12.50 did not elicit the hypersensitivity response (HR) on tobacco and eggplant leaves and were limited in their growth in kiwifruit leaves due to insertion of ISPsy31 and ISPsy36 in the hrpS and hrpR genes, respectively, interrupting the hrp cluster. Both strains had been isolated from symptomatic plants, suggesting coexistence of variant strains with reduced virulence together with virulent strains in mixed populations. The structural differences caused by rearrangements of self-genetic elements within European and New Zealand strains were comparable in number and type to those occurring among the European strains, in contrast with the significant difference in terms of nucleotide polymorphisms. We hypothesize a relaxation, during clonal expansion, of the selection limiting the accumulation of deleterious mutations associated with genome structural variation due to transposition of mobile elements. This consideration may be relevant when evaluating strategies to be adopted for epidemics management.


September 22, 2019

Strain-level genetic diversity of Methylophaga nitratireducenticrescens confers plasticity to denitrification capacity in a methylotrophic marine denitrifying biofilm.

The biofilm of a methanol-fed, fluidized denitrification system treating a marine effluent is composed of multi-species microorganisms, among which Hyphomicrobium nitrativorans NL23 and Methylophaga nitratireducenticrescens JAM1 are the principal bacteria involved in the denitrifying activities. Strain NL23 can carry complete nitrate (NO[Formula: see text]) reduction to N2, whereas strain JAM1 can perform 3 out of the 4 reduction steps. A small proportion of other denitrifiers exists in the biofilm, suggesting the potential plasticity of the biofilm in adapting to environmental changes. Here, we report the acclimation of the denitrifying biofilm from continuous operating mode to batch operating mode, and the isolation and characterization from the acclimated biofilm of a new denitrifying bacterial strain, named GP59.The denitrifying biofilm was batch-cultured under anoxic conditions. The acclimated biofilm was plated on Methylophaga specific medium to isolate denitrifying Methylophaga isolates. Planktonic cultures of strains GP59 and JAM1 were performed, and the growth and the dynamics of NO[Formula: see text], nitrite (NO[Formula: see text]) and N2O were determined. The genomes of strains GP59 and JAM1 were sequenced and compared. The transcriptomes of strains GP59 and JAM1 were derived from anoxic cultures.During batch cultures of the biofilm, we observed the disappearance of H. nitrativorans NL23 without affecting the denitrification performance. From the acclimated biofilm, we isolated strain GP59 that can perform, like H. nitrativorans NL23, the complete denitrification pathway. The GP59 cell concentration in the acclimated biofilm was 2-3 orders of magnitude higher than M. nitratireducenticrescens JAM1 and H. nitrativorans NL23. Genome analyses revealed that strain GP59 belongs to the species M. nitratireducenticrescens. The GP59 genome shares more than 85% of its coding sequences with those of strain JAM1. Based on transcriptomic analyses of anoxic cultures, most of these common genes in strain GP59 were expressed at similar level than their counterparts in strain JAM1. In contrast to strain JAM1, strain GP59 cannot reduce NO[Formula: see text] under oxic culture conditions, and has a 24-h lag time before growth and NO[Formula: see text] reduction start to occur in anoxic cultures, suggesting that both strains regulate differently the expression of their denitrification genes. Strain GP59 has the ability to reduce NO[Formula: see text] as it carries a gene encoding a NirK-type NO[Formula: see text] reductase. Based on the CRISPR sequences, strain GP59 did not emerge from strain JAM1 during the biofilm batch cultures but rather was present in the original biofilm and was enriched during this process.These results reinforce the unique trait of the species M. nitratireducenticrescens among the Methylophaga genus as facultative anaerobic bacterium. These findings also showed the plasticity of denitrifying population of the biofilm in adapting to anoxic marine environments of the bioreactor.


September 22, 2019

The Phytophthora cactorum genome provides insights into the adaptation to host defense compounds and fungicides.

Phytophthora cactorum is a homothallic oomycete pathogen, which has a wide host range and high capability to adapt to host defense compounds and fungicides. Here we report the 121.5?Mb genome assembly of the P. cactorum using the third-generation single-molecule real-time (SMRT) sequencing technology. It is the second largest genome sequenced so far in the Phytophthora genera, which contains 27,981 protein-coding genes. Comparison with other Phytophthora genomes showed that P. cactorum had a closer relationship with P. parasitica, P. infestans and P. capsici. P. cactorum has similar gene families in the secondary metabolism and pathogenicity-related effector proteins compared with other oomycete species, but specific gene families associated with detoxification enzymes and carbohydrate-active enzymes (CAZymes) underwent expansion in P. cactorum. P. cactorum had a higher utilization and detoxification ability against ginsenosides-a group of defense compounds from Panax notoginseng-compared with the narrow host pathogen P. sojae. The elevated expression levels of detoxification enzymes and hydrolase activity-associated genes after exposure to ginsenosides further supported that the high detoxification and utilization ability of P. cactorum play a crucial role in the rapid adaptability of the pathogen to host plant defense compounds and fungicides.


September 22, 2019

Complete genomic analysis of a Salmonella enterica Serovar Typhimurium isolate cultured from ready-to-eat pork in China carrying one large plasmid containing mcr-1.

One mcr-1-carrying ST34-type Salmonella Typhimurium WW012 was cultured from 3,200 ready-to-eat (RTE) pork samples in 2014 in China. Broth dilution method was applied to obtain the antimicrobial susceptibility of Salmonella Typhimurium WW012. Broth matting assays were carried out to detect transferability of this phenotype and whole-genome sequencing was performed to analyze its genomic characteristic. Thirty out of 3,200 RTE samples were positive for Salmonella and the three most frequent serotypes were identified as S. Derby (n = 8), S. Typhimurium (n = 6), and S. Enteritidis (n = 6). One S. Typhimurium isolate (S. Typhimurium WW012) cultured from RTE prepared pork was found to contain the mcr-1 gene. S. Typhimurium WW012 expressed a level of high resistance to seven different antimicrobial compounds in addition to colistin (MIC = 8 mg/L). A single plasmid, pWW012 (151,609-bp) was identified and found to be of an IncHI2/HI2A type that encoded a mcr-1 gene along with six additional antimicrobial resistance genes. Plasmid pWW012 contained an IS30-mcr-1-orf-orf-IS30 composite transposon that can be successfully transferred to Escherichia coli J53. When assessed further, the latter demonstrated considerable similarity to three plasmids pHYEC7-mcr-1, pSCC4, and pHNSHP45-2, respectively. Furthermore, plasmid pWW012 also contained a multidrug resistance (MDR) genetic structure IS26-aadA2-cmlA2-aadA1-IS406-sul3-IS26-dfrA12-aadA2-IS26, which showed high similarity to two plasmids, pHNLDF400 and pHNSHP45-2, respectively. Moreover, genes mapping to the chromosome (4,991,167-bp) were found to carry 28 mutations, related to two component regulatory systems (pmrAB, phoPQ) leading to modifications of lipid A component of the lipopolysaccharide structure. Additionally, one mutation (D87N) in the quinolone resistance determining region (QRDR) gene of gyrA was identified in this mcr-1 harboring S. Typhimurium. In addition, various virulence factors and heavy metal resistance-encoding genes were also identified on the genome of S. Typhimurium WW012. This is the first report of the complete nucleotide sequence of mcr-1-carrying MDR S. Typhimurium strain from RTE pork in China.


September 22, 2019

Evaluation of WGS based approaches for investigating a food-borne outbreak caused by Salmonella enterica serovar Derby in Germany.

In Germany salmonellosis still represents the 2nd most common bacterial foodborne disease. The majority of infections are caused by Salmonella (S.) Typhimurium and S. Enteritidis followed by a variety of other broad host-range serovars. Salmonella Derby is one of the five top-ranked serovars isolated from humans and it represents one of the most prevalent serovars in pigs, thus bearing the potential risk for transmission to humans upon consumption of pig meat and products thereof. From November 2013 to January 2014 S. Derby caused a large outbreak that affected 145 primarily elderly people. Epidemiological investigations identified raw pork sausage as the probable source of infection, which was confirmed by microbiological evidence. During the outbreak isolates from patients, food specimen and asymptomatic carriers were investigated by conventional typing methods. However, the quantity and quality of available microbiological and epidemiological data made this outbreak highly suitable for retrospective investigation by Whole Genome Sequencing (WGS) and subsequent evaluation of different bioinformatics approaches for cluster definition. Overall the WGS-based methods confirmed the results of the conventional typing but were of significant higher discriminatory power. That was particularly beneficial for strains with incomplete epidemiological data. For our data set both, single nucleotide polymorphism (SNP)- and core genome multilocus sequence typing (cgMLST)-based methods proved to be appropriate tools for cluster definition. Copyright © 2017 Elsevier Ltd. All rights reserved.


September 22, 2019

Flow cytometry analysis of Clostridium beijerinckii NRRL B-598 populations exhibiting different phenotypes induced by changes in cultivation conditions.

Biobutanol production by clostridia via the acetone-butanol-ethanol (ABE) pathway is a promising future technology in bioenergetics , but identifying key regulatory mechanisms for this pathway is essential in order to construct industrially relevant strains with high tolerance and productivity. We have applied flow cytometric analysis to C. beijerinckii NRRL B-598 and carried out comparative screening of physiological changes in terms of viability under different cultivation conditions to determine its dependence on particular stages of the life cycle and the concentration of butanol.Dual staining by propidium iodide (PI) and carboxyfluorescein diacetate (CFDA) provided separation of cells into four subpopulations with different abilities to take up PI and cleave CFDA, reflecting different physiological states. The development of a staining pattern during ABE fermentation showed an apparent decline in viability, starting at the pH shift and onset of solventogenesis, although an appreciable proportion of cells continued to proliferate. This was observed for sporulating as well as non-sporulating phenotypes at low solvent concentrations, suggesting that the increase in percentage of inactive cells was not a result of solvent toxicity or a transition from vegetative to sporulating stages. Additionally, the sporulating phenotype was challenged with butanol and cultivation with a lower starting pH was performed; in both these experiments similar trends were obtained-viability declined after the pH breakpoint, independent of the actual butanol concentration in the medium. Production characteristics of both sporulating and non-sporulating phenotypes were comparable, showing that in C. beijerinckii NRRL B-598, solventogenesis was not conditional on sporulation.We have shown that the decline in C. beijerinckii NRRL B-598 culture viability during ABE fermentation was not only the result of accumulated toxic metabolites, but might also be associated with a special survival strategy triggered by pH change.


September 22, 2019

Genetic and molecular basis of the immune system in the brachiopod Lingula anatina.

The extension of comparative immunology to non-model systems, such as mollusks and annelids, has revealed an unexpected diversity in the complement of immune receptors and effectors among evolutionary lineages. However, several lophotrochozoan phyla remain unexplored mainly due to the lack of genomic resources. The increasing accessibility of high-throughput sequencing technologies offers unique opportunities for extending genome-wide studies to non-model systems. As a result, the genome-based study of the immune system in brachiopods allows a better understanding of the alternative survival strategies developed by these immunologically neglected phyla. Here we present a detailed overview of the molecular components of the immune system identified in the genome of the brachiopod Lingula anatina. Our findings reveal conserved intracellular signaling pathways as well as unique strategies for pathogen detection and killing in brachiopods. Copyright © 2017 Elsevier Ltd. All rights reserved.


September 22, 2019

Solar-panel and parasol strategies shape the proteorhodopsin distribution pattern in marine Flavobacteriia.

Proteorhodopsin (PR) is a light-driven proton pump that is found in diverse bacteria and archaea species, and is widespread in marine microbial ecosystems. To date, many studies have suggested the advantage of PR for microorganisms in sunlit environments. The ecophysiological significance of PR is still not fully understood however, including the drivers of PR gene gain, retention, and loss in different marine microbial species. To explore this question we sequenced 21 marine Flavobacteriia genomes of polyphyletic origin, which encompassed both PR-possessing as well as PR-lacking strains. Here, we show that the possession or alternatively the lack of PR genes reflects one of two fundamental adaptive strategies in marine bacteria. Specifically, while PR-possessing bacteria utilize light energy (“solar-panel strategy”), PR-lacking bacteria exclusively possess UV-screening pigment synthesis genes to avoid UV damage and would adapt to microaerobic environment (“parasol strategy”), which also helps explain why PR-possessing bacteria have smaller genomes than those of PR-lacking bacteria. Collectively, our results highlight the different strategies of dealing with light, DNA repair, and oxygen availability that relate to the presence or absence of PR phototrophy.


September 22, 2019

PGI2, a novel SGI1-relative multidrug-resistant genomic island characterized in Proteus mirabilis.

A novel 61,578-bp genomic island named Proteus genomic island 2 (PGI2) was characterized in Proteus mirabilis of swine origin in China. The 23.85-kb backbone of PGI2 is related to those of Salmonella genomic island 1 and Acinetobacter genomic island 1. The multidrug resistance (MDR) region of PGI2 is a complex class 1 integron containing 14 different resistance genes. PGI2 was conjugally mobilized in trans to Escherichia coli in the presence of a conjugative IncC helper plasmid. Copyright © 2018 American Society for Microbiology.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.