X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Tuesday, April 21, 2020

Study of the whole genome, methylome and transcriptome of Cordyceps militaris.

The complete genome of Cordyceps militaris was sequenced using single-molecule real-time (SMRT) sequencing technology at a coverage over 300×. The genome size was 32.57?Mb, and 14 contigs ranging from 0.35 to 4.58?Mb with an N50 of 2.86?Mb were assembled, including 4 contigs with telomeric sequences on both ends and an additional 8 contigs with telomeric sequences on either the 5′ or 3′ end. A methylome database of the genome was constructed using SMRT and m4C and m6A methylated nucleotides, and many unknown modification types were identified. The major m6A methylation motif is GA and GGAG, and the major m4C methylation…

Read More »

Tuesday, April 21, 2020

Hybrid sequencing of the Gynostemma pentaphyllum transcriptome provides new insights into gypenoside biosynthesis.

Gypenosides are a group of triterpene saponins from Gynostemma pentaphyllum that are the same as or very similar to ginsenosides from the Panax species. Several enzymes involved in ginsenoside biosynthesis have been characterized, which provide important clues for elucidating the gypenoside biosynthetic pathway. We suppose that gypenosides and ginsenosides may have a similar biosynthetic mechanism and that the corresponding enzymes in the two pathways may have considerable similarity in their sequences. To further understand gypenoside biosynthesis, we sequenced the G. pentaphyllum transcriptome with a hybrid sequencing-based strategy and then determined the candidate genes involved in this pathway using phylogenetic tree…

Read More »

Tuesday, April 21, 2020

Closing the Yield Gap for Cannabis: A Meta-Analysis of Factors Determining Cannabis Yield.

Until recently, the commercial production of Cannabis sativa was restricted to varieties that yielded high-quality fiber while producing low levels of the psychoactive cannabinoid tetrahydrocannabinol (THC). In the last few years, a number of jurisdictions have legalized the production of medical and/or recreational cannabis with higher levels of THC, and other jurisdictions seem poised to follow suit. Consequently, demand for industrial-scale production of high yield cannabis with consistent cannabinoid profiles is expected to increase. In this paper we highlight that currently, projected annual production of cannabis is based largely on facility size, not yield per square meter. This meta-analysis of…

Read More »

Tuesday, April 21, 2020

Full-length transcriptome sequencing and methyl jasmonate-induced expression profile analysis of genes related to patchoulol biosynthesis and regulation in Pogostemon cablin.

Pogostemon cablin (Blanco) Benth. (Patchouli) is an important aromatic and medicinal plant and widely used in traditional Chinese medicine as well as in the perfume industry. Patchoulol is the primary bioactive component in P. cablin, its biosynthesis has attracted widespread interests. Previous studies have surveyed the putative genes involved in patchoulol biosynthesis using next-generation sequencing method; however, technical limitations generated by short-read sequencing restrict the yield of full-length genes. Additionally, little is known about the expression pattern of genes especially patchoulol biosynthesis related genes in response to methyl jasmonate (MeJA). Our understanding of patchoulol biosynthetic pathway still remained largely incomplete…

Read More »

Tuesday, April 21, 2020

A draft genome for Spatholobus suberectus.

Spatholobus suberectus Dunn (S. suberectus), which belongs to the Leguminosae, is an important medicinal plant in China. Owing to its long growth cycle and increased use in human medicine, wild resources of S. suberectus have decreased rapidly and may be on the verge of extinction. De novo assembly of the whole S. suberectus genome provides us a critical potential resource towards biosynthesis of the main bioactive components and seed development regulation mechanism of this plant. Utilizing several sequencing technologies such as Illumina HiSeq X Ten, single-molecule real-time sequencing, 10x Genomics, as well as new assembly techniques such as FALCON and…

Read More »

Tuesday, April 21, 2020

Evaluation of reference genes for normalizing RT-qPCR in leaves and suspension cells of Cephalotaxus hainanensis under various stimuli.

Reverse transcription quantitative real-time PCR (RT-qPCR) is a widely used approach for investigating gene expression levels in plants because of its high reproducibility, sensitivity, accuracy and rapidness. Evaluation of reference genes for normalizing RT-qPCR data is a necessary step, especially in new plant varieties. Cephalotaxus hainanensis is a precious medicinal plant belonging to the family of Cephalotaxaceae and no RT-qPCR studies have been reported on it.In this study, 9 candidate reference genes were selected from the transcriptome data of C. hainanensis; 3 statistical algorithms (geNorm, NormFinder, BestKeeper) were applied to evaluate their expression stabilities through 180 samples under 6 stimuli…

Read More »

Monday, March 30, 2020

Webinar: Smoking out structural variants in the cannabis genome

In this webinar, Sarah Kingan, Staff Scientist, PacBio, and Kevin McKernan, Founder and Chief Science Officer, Medicinal Genomics, describe their work assembling the most comprehensive and complete cannabis genome of a Type II (THCA and CBDA producing) plant. They also share the latest advances in cannabis genomics, including how PacBio long-read sequencing enables high-quality genomics research in plants, annotation of the cannabis reference genome using full-length transcript sequencing, and new insights into cannabinoid synthesis across different types of cannabis plants.

Read More »

Sunday, September 22, 2019

Genome-wide transcriptome profiling of the medicinal plant Zanthoxylum planispinum using a single-molecule direct RNA sequencing approach.

High-throughput RNA sequencing has revolutionized transcriptome-based studies of candidate genes, key pathways and gene regulation in non-model organisms. We analyzed full-length cDNA sequences in Zanthoxylum planispinum (Z. planispinum), a medicinal herb in major parts of East Asia. The full-length mRNA derived from tissues of leaf, early fruit and maturing fruit stage were sequenced using PacBio RSII platform to identify isoform transcriptome. We obtained 51,402 unigenes, with average 1781?bp per gene in 82.473?Mb gene lengths. Among 51,402, 3963 unigenes showed variety of isoform. By selection of one representative gene among each of the various isoforms, we finalized 46,306 unique gene set…

Read More »

Sunday, September 22, 2019

Full-length transcriptome sequences and splice variants obtained by a combination of sequencing platforms applied to different root tissues of Salvia miltiorrhiza and tanshinone biosynthesis.

Danshen, Salvia miltiorrhiza Bunge, is one of the most widely used herbs in traditional Chinese medicine, wherein its rhizome/roots are particularly valued. The corresponding bioactive components include the tanshinone diterpenoids, the biosynthesis of which is a subject of considerable interest. Previous investigations of the S. miltiorrhiza transcriptome have relied on short-read next-generation sequencing (NGS) technology, and the vast majority of the resulting isotigs do not represent full-length cDNA sequences. Moreover, these efforts have been targeted at either whole plants or hairy root cultures. Here, we demonstrate that the tanshinone pigments are produced and accumulate in the root periderm, and apply a…

Read More »

Sunday, September 22, 2019

Full-length transcriptome survey and expression analysis of Cassia obtusifolia to discover putative genes related to aurantio-obtusin biosynthesis, seed formation and development, and stress response.

The seed is the pharmaceutical and breeding organ of Cassia obtusifolia, a well-known medical herb containing aurantio-obtusin (a kind of anthraquinone), food, and landscape. In order to understand the molecular mechanism of the biosynthesis of aurantio-obtusin, seed formation and development, and stress response of C. obtusifolia, it is necessary to understand the genomics information. Although previous seed transcriptome of C. obtusifolia has been carried out by short-read next-generation sequencing (NGS) technology, the vast majority of the resulting unigenes did not represent full-length cDNA sequences and supply enough gene expression profile information of the various organs or tissues. In this study,…

Read More »

Sunday, September 22, 2019

Lentinula edodes genome survey and postharvest transcriptome analysis.

Lentinula edodes is a popular, cultivated edible and medicinal mushroom. Lentinula edodes is susceptible to postharvest problems, such as gill browning, fruiting body softening, and lentinan degradation. We constructed a de novo assembly draft genome sequence and performed gene prediction for Lentinula edodesDe novo assembly was carried out using short reads from paired-end and mate-paired libraries and by using long reads by PacBio, resulting in a contig number of 1,951 and an N50 of 1 Mb. Furthermore, we predicted genes by Augustus using transcriptome sequencing (RNA-seq) data from the whole life cycle of Lentinula edodes, resulting in 12,959 predicted genes.…

Read More »

Sunday, September 22, 2019

Hybrid sequencing of full-length cDNA transcripts of stems and leaves in Dendrobium officinale.

Dendrobium officinale is an extremely valuable orchid used in traditional Chinese medicine, so sought after that it has a higher market value than gold. Although the expression profiles of some genes involved in the polysaccharide synthesis have previously been investigated, little research has been carried out on their alternatively spliced isoforms in D. officinale. In addition, information regarding the translocation of sugars from leaves to stems in D. officinale also remains limited. We analyzed the polysaccharide content of D. officinale leaves and stems, and completed in-depth transcriptome sequencing of these two diverse tissue types using second-generation sequencing (SGS) and single-molecule…

Read More »

Sunday, September 22, 2019

Full-length transcriptome sequences and the identification of putative genes for flavonoid biosynthesis in safflower.

The flower of the safflower (Carthamus tinctorius L.) has been widely used in traditional Chinese medicine for the ability to improve cerebral blood flow. Flavonoids are the primary bioactive components in safflower, and their biosynthesis has attracted widespread interest. Previous studies mostly used second-generation sequencing platforms to survey the putative flavonoid biosynthesis genes. For a better understanding of transcription data and the putative genes involved in flavonoid biosynthesis in safflower, we carry our study.High-quality RNA was extracted from six types of safflower tissue. The RNAs of different tissues were mixed equally and used for multiple size-fractionated libraries (1-2, 2-3 and…

Read More »

Sunday, September 22, 2019

De novo transcriptome assembly of the Chinese pearl barley, adlay, by full-length isoform and short-read RNA sequencing.

Adlay (Coix lacryma-jobi) is a tropical grass that has long been used in traditional Chinese medicine and is known for its nutritional benefits. Recent studies have shown that vitamin E compounds in adlay protect against chronic diseases such as cancer and heart disease. However, the molecular basis of adlay’s health benefits remains unknown. Here, we generated adlay gene sets by de novo transcriptome assembly using long-read isoform sequencing (Iso-Seq) and short-read RNA-Sequencing (RNA-Seq). The gene sets obtained from Iso-seq and RNA-seq contained 31,177 genes and 57,901 genes, respectively. We confirmed the validity of the assembled gene sets by experimentally analyzing…

Read More »

Sunday, September 22, 2019

Global identification of the full-length transcripts and alternative splicing related to phenolic acid biosynthetic genes in Salvia miltiorrhiza.

Salvianolic acids are among the main bioactive components in Salvia miltiorrhiza, and their biosynthesis has attracted widespread interest. However, previous studies on the biosynthesis of phenolic acids using next-generation sequencing platforms are limited with regard to the assembly of full-length transcripts. Based on hybrid-seq (next-generation and single molecular real-time sequencing) of the S. miltiorrhiza root transcriptome, we experimentally identified 15 full-length transcripts and four alternative splicing events of enzyme-coding genes involved in the biosynthesis of rosmarinic acid. Moreover, we herein demonstrate that lithospermic acid B accumulates in the phloem and xylem of roots, in agreement with the expression patterns of…

Read More »

1 2 3

Subscribe for blog updates:

Archives