X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Tuesday, April 21, 2020

Hybrid Sequencing of Full-Length cDNA Transcripts of the Medicinal Plant Scutellaria baicalensis.

Scutellaria baicalensis is a well-known medicinal plant that produces biologically active flavonoids, such as baicalin, baicalein, and wogonin. Pharmacological studies have shown that these compounds have anti-inflammatory, anti-bacterial, and anti-cancer activities. Therefore, it is of great significance to investigate the genetic information of S. baicalensis, particularly the genes related to the biosynthetic pathways of these compounds. Here, we constructed the full-length transcriptome of S. baicalensis using a hybrid sequencing strategy and acquired 338,136 full-length sequences, accounting for 93.3% of the total reads. After the removal of redundancy and correction with Illumina short reads, 75,785 nonredundant transcripts were generated, among which…

Read More »

Tuesday, April 21, 2020

Dynamic Changes in Metabolite Accumulation and the Transcriptome during Leaf Growth and Development in Eucommia ulmoides.

Eucommia ulmoides Oliver is widely distributed in China. This species has been used mainly in medicine due to the high concentration of chlorogenic acid (CGA), flavonoids, lignans, and other compounds in the leaves and barks. However, the categories of metabolites, dynamic changes in metabolite accumulation and overall molecular mechanisms involved in metabolite biosynthesis during E. ulmoides leaf growth and development remain unknown. Here, a total of 515 analytes, including 127 flavonoids, 46 organic acids, 44 amino acid derivatives, 9 phenolamides, and 16 vitamins, were identified from four E. ulmoides samples using ultraperformance liquid chromatography-mass spectrometry (UPLC-MS) (for widely targeted metabolites).…

Read More »

Tuesday, April 21, 2020

Complete chloroplast genome sequences of Kaempferia galanga and Kaempferia elegans: Molecular structures and comparative analysis.

Kaempferia galanga and Kaempferia elegans, which belong to the genus Kaempferia family Zingiberaceae, are used as valuable herbal medicine and ornamental plants, respectively. The chloroplast genomes have been used for molecular markers, species identification and phylogenetic studies. In this study, the complete chloroplast genome sequences of K. galanga and K. elegans are reported. Results show that the complete chloroplast genome of K. galanga is 163,811 bp long, having a quadripartite structure with large single copy (LSC) of 88,405 bp and a small single copy (SSC) of 15,812 bp separated by inverted repeats (IRs) of 29,797 bp. Similarly, the complete chloroplast…

Read More »

Tuesday, April 21, 2020

Comprehensive transcriptome analysis reveals genes potentially involved in isoflavone biosynthesis in Pueraria thomsonii Benth.

Pueraria thomsonii Benth is an important medicinal plant. Transcriptome sequencing, unigene assembly, the annotation of transcripts and the study of gene expression profiles play vital roles in gene function research. However, the full-length transcriptome of P. thomsonii remains unknown. Here, we obtained 44,339 nonredundant transcripts of P. thomsonii by using the PacBio RS II Isoform and Illumina sequencing platforms, of which 43,195 were annotated genes. Compared with the expression levels in the plant roots, those of transcripts with a |fold change| = 4 and FDR < 0.01 in the leaves or stems were assigned as differentially expressed transcripts (DETs). In…

Read More »

Tuesday, April 21, 2020

The Reference Genome Sequence of Scutellaria baicalensis Provides Insights into the Evolution of Wogonin Biosynthesis.

Scutellaria baicalensis Georgi is important in Chinese traditional medicine where preparations of dried roots, “Huang Qin,” are used for liver and lung complaints and as complementary cancer treatments. We report a high-quality reference genome sequence for S. baicalensis where 93% of the 408.14-Mb genome has been assembled into nine pseudochromosomes with a super-N50 of 33.2 Mb. Comparison of this sequence with those of closely related species in the order Lamiales, Sesamum indicum and Salvia splendens, revealed that a specialized metabolic pathway for the synthesis of 4′-deoxyflavone bioactives evolved in the genus Scutellaria. We found that the gene encoding a specific…

Read More »

Tuesday, April 21, 2020

The genome of the medicinal plant Andrographis paniculata provides insight into the biosynthesis of the bioactive diterpenoid neoandrographolide.

Andrographis paniculata is a herbaceous dicot plant widely used for its anti-inflammatory and anti-viral properties across its distribution in China, India and other Southeast Asian countries. A. paniculata was used as a crucial therapeutic treatment during the influenza epidemic of 1919 in India, and is still used for the treatment of infectious disease in China. A. paniculata produces large quantities of the anti-inflammatory diterpenoid lactones andrographolide and neoandrographolide, and their analogs, which are touted to be the next generation of natural anti-inflammatory medicines for lung diseases, hepatitis, neurodegenerative disorders, autoimmune disorders and inflammatory skin diseases. Here, we report a chromosome-scale A. paniculata genome…

Read More »

Tuesday, April 21, 2020

Stout camphor tree genome fills gaps in understanding of flowering plant genome evolution.

We present reference-quality genome assembly and annotation for the stout camphor tree (Cinnamomum kanehirae (Laurales, Lauraceae)), the first sequenced member of the Magnoliidae comprising four orders (Laurales, Magnoliales, Canellales and Piperales) and over 9,000 species. Phylogenomic analysis of 13 representative seed plant genomes indicates that magnoliid and eudicot lineages share more recent common ancestry than monocots. Two whole-genome duplication events were inferred within the magnoliid lineage: one before divergence of Laurales and Magnoliales and the other within the Lauraceae. Small-scale segmental duplications and tandem duplications also contributed to innovation in the evolutionary history of Cinnamomum. For example, expansion of the…

Read More »

Tuesday, April 21, 2020

Genome-wide analysis of methyl jasmonate-regulated isoform expression in the medicinal plant Andrographis paniculata

Alternative splicing can increase the complexity of the transcriptome and proteome. The most common mechanism of alternative splicing in plants is intron retention (IR), and the expression levels of IR isoforms can be differentially regulated when facing abiotic stress. The full-length transcriptome of the medicinal plant Andrographis paniculata was sequenced using both Illumina- and SMRT-based RNA-seq and a total of 4846 IR isoforms were identified. The expression levels of 310/296 IR isoforms were up-regulated, and 629/659 IR isoforms were down-regulated at 24?h/48?h after methyl jasmonate (MeJA) treatment, respectively. In the (E,E,E)-geranylgeranyl diphosphate (GGPP) biosynthesis pathway which contributes to the andrographolide…

Read More »

Tuesday, April 21, 2020

Hypoglycemic activity and gut microbiota regulation of a novel polysaccharide from Grifola frondosa in type 2 diabetic mice.

GFP-N, a novel heteropolysaccharide with a molecular weight of 1.26?×?107?Da, was isolated from maitake mushroom and purified by anion-exchange chromatography on a DEAE cellulose-52 column and gel-filtration chromatography on a Sephadex G-100 column. Its structure was characterized by Fourier transform infrared spectroscopy and one-dimensional (1H- and 13C-) NMR spectra, 1H1H correlation spectroscopy, and 1H13C heteronuclear single-quantum coherence spectroscopy. The structure of GFP-N consisted of L-arabinose, D-mannose and D-glucose and mainly contained three kinds of linkage type units as ?2,6)-a-D-Manp-(1???4, a-L-Araf-C1?, and ?3,6)-ß-D-Glcp-(1???. GFP-N could activate insulin receptor substrate 1, phosphatidylinositol-3-kinase, and glucose transporter 4 and inhibit c-Jun N-terminal kinase 1/2…

Read More »

Tuesday, April 21, 2020

The complete mitochondrial genome sequence of Schisandra chinensis (Austrobaileyales: Schisandraceae)

Chinese magnolia vine (Schisandra chinensis) is an economically important oriental medicinal plant that belongs to the Schisandraceae family. The complete mitochondrial genome sequence of S. chinensis was 946,141bp in length. A total of 45 genes was annotated, including 30 protein-coding genes, 12 tRNA genes, and 3 rRNA genes. A phylogenetic tree based on the mitochondrial genome demonstrated that S. chinensis was most closely related to Schisandra sphenanthera of the Schisandraceae family.

Read More »

Tuesday, April 21, 2020

High Quality Draft Genome of Arogyapacha (Trichopus zeylanicus), an Important Medicinal Plant Endemic to Western Ghats of India.

Arogyapacha, the local name of Trichopus zeylanicus, is a rare, indigenous medicinal plant of India. This plant is famous for its traditional use as an instant energy stimulant. So far, no genomic resource is available for this important plant and hence its metabolic pathways are poorly understood. Here, we report on a high-quality draft assembly of approximately 713.4 Mb genome of T. zeylanicus, first draft genome from the genus Trichopus The assembly was generated in a hybrid approach using Illumina short-reads and Pacbio longer-reads. The total assembly comprised of 22601 scaffolds with an N50 value of 433.3 Kb. We predicted…

Read More »

Tuesday, April 21, 2020

A physical and genetic map of Cannabis sativa identifies extensive rearrangements at the THC/CBD acid synthase loci.

Cannabis sativa is widely cultivated for medicinal, food, industrial, and recreational use, but much remains unknown regarding its genetics, including the molecular determinants of cannabinoid content. Here, we describe a combined physical and genetic map derived from a cross between the drug-type strain Purple Kush and the hemp variety “Finola.” The map reveals that cannabinoid biosynthesis genes are generally unlinked but that aromatic prenyltransferase (AP), which produces the substrate for THCA and CBDA synthases (THCAS and CBDAS), is tightly linked to a known marker for total cannabinoid content. We further identify the gene encoding CBCA synthase (CBCAS) and characterize its…

Read More »

Tuesday, April 21, 2020

Chloroplast genome of Dalbergia cochinchinensis (Fabaceae), a rare and Endangered rosewood species in Southeast Asia

Dalbergia cochinchinensis is an tree species in Southeast Asia, its wood and wood products are incred- ibly valuable and are also of important medicinal value. In this study, its chloroplast genome was char- acterized using next generation Illumina pair-end and Pacbio sequencing dataset. The whole genome was 156,576bp in length and contains a pair of 25,682bp inverted repeat regions, which were sepa- rated by a large single copy region and a small single copy region of 85,886 and 19,326bp in length, respectively. The cp genome contained 111 genes, including 77 protein-coding genes, 30 tRNAs and 4 rRNAs. A neighbor-joining phylogenetic…

Read More »

Tuesday, April 21, 2020

A global survey of full-length transcriptome of Ginkgo biloba reveals transcript variants involved in flavonoid biosynthesis

Ginkgo biloba, which contains flavonoids as bioactive components, is widely used in traditional Chinese medicine. Increasing the flavonoid production of medicinal plants through genetic engineering generally focuses on the key genes involved in flavonoid biosynthesis. However, the molecular mechanisms underlying such biosynthesis are not yet well understood. To understand these mechanisms, a combination of second-generation sequencing (SGS) and single-molecule real-time (SMRT) sequencing was applied to G. biloba. Eight tissues were sampled for SMRT sequencing to generate a high-quality, full-length transcriptome database. From 23.36 Gb clean reads, 12,954 alternative polyadenylation events, 12,290 alternative splicing events, 929 fusion transcripts, 2,286 novel transcripts,…

Read More »

Tuesday, April 21, 2020

Comparative analysis of proteomic and metabolomic profiles of different species of Paris.

An extract prepared from species of Paris is the most widely consumed herbal product in China. The genus Paris includes a variety of genotypes with different medicinal component contents but only two are defined as official sources. Closely related species have different medicinal properties because of differential expression of proteins and metabolites. To better understand the molecular basis of these differences, we examined proteomic and metabolomic changes in rhizomes of P. polyphylla var. chinensis, P. polyphylla var. yunnanensis, and P. fargesii var. fargesii using a technique known as sequential window acquisition of all theoretical mass spectra as well as gas…

Read More »

1 2 3

Subscribe for blog updates:

Archives

Press Release

Pacific Biosciences Announces New Chief Financial Officer

Monday, September 14, 2020

Stay
Current

Visit our blog »