Menu
April 21, 2020

Dynamic Changes in Metabolite Accumulation and the Transcriptome during Leaf Growth and Development in Eucommia ulmoides.

Authors: Li, Long and Liu, Minhao and Shi, Kan and Yu, Zhijing and Zhou, Ying and Fan, Ruishen and Shi, Qianqian

Eucommia ulmoides Oliver is widely distributed in China. This species has been used mainly in medicine due to the high concentration of chlorogenic acid (CGA), flavonoids, lignans, and other compounds in the leaves and barks. However, the categories of metabolites, dynamic changes in metabolite accumulation and overall molecular mechanisms involved in metabolite biosynthesis during E. ulmoides leaf growth and development remain unknown. Here, a total of 515 analytes, including 127 flavonoids, 46 organic acids, 44 amino acid derivatives, 9 phenolamides, and 16 vitamins, were identified from four E. ulmoides samples using ultraperformance liquid chromatography-mass spectrometry (UPLC-MS) (for widely targeted metabolites). The accumulation of most flavonoids peaked in growing leaves, followed by old leaves. UPLC-MS analysis indicated that CGA accumulation increased steadily to a high concentration during leaf growth and development, and rutin showed a high accumulation level in leaf buds and growing leaves. Based on single-molecule long-read sequencing technology, 69,020 transcripts and 2880 novel loci were identified in E. ulmoides. Expression analysis indicated that isoforms in the flavonoid biosynthetic pathway and flavonoid metabolic pathway were highly expressed in growing leaves and old leaves. Co-expression network analysis suggested a potential direct link between the flavonoid and phenylpropanoid biosynthetic pathways via the regulation of transcription factors, including MYB (v-myb avian myeloblastosis viral oncogene homolog) and bHLH (basic/helix-loop-helix). Our study predicts dynamic metabolic models during leaf growth and development and will support further molecular biological studies of metabolite biosynthesis in E. ulmoides. In addition, our results significantly improve the annotation of the E. ulmoides genome.

Journal: International journal of molecular sciences
DOI: 10.3390/ijms20164030
Year: 2019

Read publication

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.