Menu
September 22, 2019

Modeling trophic dependencies and exchanges among insects’ bacterial symbionts in a host-simulated environment.

Individual organisms are linked to their communities and ecosystems via metabolic activities. Metabolic exchanges and co-dependencies have long been suggested to have a pivotal role in determining community structure. In phloem-feeding insects such metabolic interactions with bacteria enable complementation of their deprived nutrition. The phloem-feeding whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) harbors an obligatory symbiotic bacterium, as well as varying combinations of facultative symbionts. This well-defined bacterial community in B. tabaci serves here as a case study for a comprehensive and systematic survey of metabolic interactions within the bacterial community and their associations with documented occurrences of bacterial combinations. We first reconstructed the metabolic networks of five common B. tabaci symbionts genera (Portiera, Rickettsia, Hamiltonella, Cardinium and Wolbachia), and then used network analysis approaches to predict: (1) species-specific metabolic capacities in a simulated bacteriocyte-like environment; (2) metabolic capacities of the corresponding species’ combinations, and (3) dependencies of each species on different media components.The predictions for metabolic capacities of the symbionts in the host environment were in general agreement with previously reported genome analyses, each focused on the single-species level. The analysis suggests several previously un-reported routes for complementary interactions and estimated the dependency of each symbiont in specific host metabolites. No clear association was detected between metabolic co-dependencies and co-occurrence patterns.The analysis generated predictions for testable hypotheses of metabolic exchanges and co-dependencies in bacterial communities and by crossing them with co-occurrence profiles, contextualized interaction patterns into a wider ecological perspective.


September 22, 2019

Pseudomonas aeruginosa L10: A hydrocarbon-degrading, biosurfactant-producing, and plant-growth-promoting endophytic bacterium isolated from a reed (Phragmites australis).

Bacterial endophytes with the capacity to degrade petroleum hydrocarbons and promote plant growth may facilitate phytoremediation for the removal of petroleum hydrocarbons from contaminated soils. A hydrocarbon-degrading, biosurfactant-producing, and plant-growth-promoting endophytic bacterium, Pseudomonas aeruginosa L10, was isolated from the roots of a reed, Phragmites australis, in the Yellow River Delta, Shandong, China. P. aeruginosa L10 efficiently degraded C10-C26n-alkanes from diesel oil, as well as common polycyclic aromatic hydrocarbons (PAHs) such as naphthalene, phenanthrene, and pyrene. In addition, P. aeruginosa L10 could produce biosurfactant, which was confirmed by the oil spreading method, and surface tension determination of inocula. Moreover, P. aeruginosa L10 had plant growth-stimulating attributes, including siderophore and indole-3-acetic acid (IAA) release, along with 1-aminocyclopropane-1-carboxylic (ACC) deaminase activity. To explore the mechanisms underlying the phenotypic traits of endophytic P. aeruginosa L10, we sequenced its complete genome. From the genome, we identified genes related to petroleum hydrocarbon degradation, such as putative genes encoding monooxygenase, dioxygenase, alcohol dehydrogenase, and aldehyde dehydrogenase. Genome annotation revealed that P. aeruginosa L10 contained a gene cluster involved in the biosynthesis of rhamnolipids, rhlABRI, which should be responsible for the observed biosurfactant activity. We also identified two clusters of genes involved in the biosynthesis of siderophore (pvcABCD and pchABCDREFG). The genome also harbored tryptophan biosynthetic genes (trpAB, trpDC, trpE, trpF, and trpG) that are responsible for IAA synthesis. Moreover, the genome contained the ACC deaminase gene essential for ACC deaminase activity. This study will facilitate applications of endophytic P. aeruginosa L10 to phytoremediation by advancing the understanding of hydrocarbon degradation, biosurfactant synthesis, and mutualistic interactions between endophytes and host plants.


September 22, 2019

Acquisition of resistance to carbapenem and macrolide-mediated quorum sensing inhibition by Pseudomonas aeruginosa via ICE Tn4371 6385

Pseudomonas aeruginosa can cause life-threatening infections in immunocompromised patients. The first-line agents to treat P. aeruginosa infections are carbapenems. However, the emergence of carbapenem-resistant P. aeruginosa strains greatly compromised the effec- tiveness of carbapenem treatment, which makes the surveillance on their spreading and transmission important. Here we characterized the full-length genomes of two carbapenem- resistant P. aeruginosa clinical isolates that are capable of producing New Delhi metallo-ß- lactamase-1 (NDM-1). We show that blaNDM-1 is carried by a novel integrative and conjugative element (ICE) ICETn43716385, which also carries the macrolide resistance gene msr(E) and the florfenicol resistance gene floR. By exogenously expressing msr(E) in P. aeruginosa laboratory strains, we show that Msr(E) can abolish azithromycin-mediated quorum sensing inhibition in vitro and anti-Pseudomonas effect in vivo. We conclude that ICEs are important in transmitting carbapenem resistance, and that anti-virulence treatment of P. aeruginosa infections using sub-inhibitory concentrations of macrolides can be challenged by horizontal gene transfer.


September 22, 2019

Whole genome sequence and comparative analysis of Borrelia burgdorferi MM1.

Lyme disease is caused by spirochaetes of the Borrelia burgdorferi sensu lato genospecies. Complete genome assemblies are available for fewer than ten strains of Borrelia burgdorferi sensu stricto, the primary cause of Lyme disease in North America. MM1 is a sensu stricto strain originally isolated in the midwestern United States. Aside from a small number of genes, the complete genome sequence of this strain has not been reported. Here we present the complete genome sequence of MM1 in relation to other sensu stricto strains and in terms of its Multi Locus Sequence Typing. Our results indicate that MM1 is a new sequence type which contains a conserved main chromosome and 15 plasmids. Our results include the first contiguous 28.5 kb assembly of lp28-8, a linear plasmid carrying the vls antigenic variation system, from a Borrelia burgdorferi sensu stricto strain.


September 22, 2019

Structure and biosynthesis of mayamycin B, a new polyketide with antibacterial activity from Streptomyces sp. 120454.

Mayamycin B, a new antibacterial type II polyketide, together with its known congener mayamycin A, were isolated from Streptomyces sp. 120454. The structure of new compound was elucidated by extensive spectroscopic analysis and comparison with literature data. Sequencing and bioinformatics analysis revealed the biosynthetic gene cluster for mayamycins A and B.


September 22, 2019

Progressive approach for SNP calling and haplotype assembly using single molecular sequencing data.

Haplotype information is essential to the complete description and interpretation of genomes, genetic diversity and genetic ancestry. The new technologies can provide Single Molecular Sequencing (SMS) data that cover about 90% of positions over chromosomes. However, the SMS data has a higher error rate comparing to 1% error rate for short reads. Thus, it becomes very difficult for SNP calling and haplotype assembly using SMS reads. Most existing technologies do not work properly for the SMS data.In this paper, we develop a progressive approach for SNP calling and haplotype assembly that works very well for the SMS data. Our method can handle more than 200 million non-N bases on Chromosome 1 with millions of reads, more than 100 blocks, each of which contains more than 2 million bases and more than 3K SNP sites on average. Experiment results show that the false discovery rate and false negative rate for our method are 15.7 and 11.0% on NA12878, and 16.5 and 11.0% on NA24385. Moreover, the overall switch errors for our method are 7.26 and 5.21 with average 3378 and 5736 SNP sites per block on NA12878 and NA24385, respectively. Here, we demonstrate that SMS reads alone can generate a high quality solution for both SNP calling and haplotype assembly.Source codes and results are available at https://github.com/guofeieileen/SMRT/wiki/Software.


September 22, 2019

A genome comparison of T7-like Podoviruses that infect Caulobacter crescentus.

Bacteriophages remain an understudied component of bacterial communities. Therefore, our laboratory has initiated an effort to isolate large numbers of bacteriophages that infect Caulobacter crescentus to provide an estimate of the diversity of bacteriophages that infect this common environmental bacterium. The majority of the new isolates are phicbkviruses, a genus of giant viruses that appear to be Caulobacter specific. However, we have also isolated several Podoviruses with icosahedral heads and small tails. One of these Podoviruses, designated Lullwater, is similar to two previously isolated Caulobacter phages, Cd1 and Percy. All three have genomes that are approximately 45 kb and contain approximately 30 genes. The gene order is conserved among the three genomes with one of the genes coding for a DNA polymerase that has homology to the family of T7 DNA polymerases. Phylogenetic trees based on either the DNA polymerase or the RNA polymerase amino acid sequences suggests that the three phages represent a new branch of the T7virus tree. Based on these similarities, we concluded that Cd1, Lullwater, and Percy comprise a new group in the T7virus genus.


September 22, 2019

Co-occurrence of mcr-1 in the chromosome and on an IncHI2 plasmid: persistence of colistin resistance in Escherichia coli.

Two colistin-resistant Escherichia coli strains (FS13Z2S and FS3Z6C) possessing chromosomally encoded mcr-1 isolated from swine were characterised. Whole-genome sequencing revealed that in strain FS13Z2S mcr-1 occurred in triplicate in the chromosome with another copy encoded on a pHNSHP45-2-like IncHI2 plasmid, whereas in strain FS3Z6C only one copy mcr-1 was inserted in the chromosome. It seems likely that the triplication of chromosomal copies of mcr-1 in FS13Z2S is due to intramolecular transposition events via a composite transposon containing an mcr-1 cassette bracketed by two copies of insertion sequence ISApl1, and the pap2 gene at the insertion site was truncated by an IS1294-like element. In plasmid pFS13Z2S and the chromosome of strain FS3Z6C, only a single copy of ISApl1 was present upstream of the mcr-1 cassette. The two strains exhibited similar colistin minimum inhibitory concentrations (MICs) and featured phosphoethanolamine addition to lipid A, without regard to the copy number of mcr-1. The mcr-1-harbouring plasmid was unstable in wild-type strain FS13Z2S and was quickly lost after 7 days of passage on colistin-free Luria-Bertani broth containing 0.5% SDS, but the mcr-1 copies on the chromosome persisted. These results reveal that the single copy of mcr-1 could result in modification of lipopolysaccharide (LPS) and cause colistin resistance in E. coli. Acquisition of multiple copies of mcr-1, especially on the chromosome, would facilitate stable persistence of colistin resistance in the host strain. Copyright © 2018 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.


September 22, 2019

Coexistence of mcr-1, blaKPC-2 and two copies of fosA3 in a clinical Escherichia coli strain isolated from urine.

Here we report the first clinical Escherichia coli isolate co-harboring mcr-1, blaKPC-2 and two copies of fosA3 from China. The five plasmids of the isolate were completely sequenced and analyzed. Gene mcr-1 and blaKPC-2 were located on IncI2 and IncR plasmid, respectively. A variety of other resistance determinants such as fosA3 (two copies), blaCTX-M-123, blaOXA-1 and blaCTX-M-65 were also identified from the rest plasmids. Copyright © 2018 Elsevier B.V. All rights reserved.


September 22, 2019

Genome-based evolutionary history of Pseudomonas spp.

Pseudomonas is a large and diverse genus of Gammaproteobacteria. To provide a framework for discovery of evolutionary and taxonomic relationships of these bacteria, we compared the genomes of type strains of 163 species and 3 additional subspecies of Pseudomonas, including 118 genomes sequenced herein. A maximum likelihood phylogeny of the 166 type strains based on protein sequences of 100 single-copy orthologous genes revealed thirteen groups of Pseudomonas, composed of two to sixty three species each. Pairwise average nucleotide identities and alignment fractions were calculated for the data set of the 166 type strains and 1224 genomes of Pseudomonas available in public databases. Results revealed that 394 of the 1224 genomes were distinct from any type strain, suggesting that the type strains represent only a fraction of the genomic diversity of the genus. The core genome of Pseudomonas was determined to contain 794 genes conferring primarily housekeeping functions. The results of this study provide a phylogenetic framework for future studies aiming to resolve the classification and phylogenetic relationships, identify new gene functions and phenotypes, and explore the ecological and metabolic potential of the Pseudomonas spp.© 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.


September 22, 2019

Amplification and adaptation of centromeric repeats in polyploid switchgrass species.

Centromeres in most higher eukaryotes are composed of long arrays of satellite repeats from a single satellite repeat family. Why centromeres are dominated by a single satellite repeat and how the satellite repeats originate and evolve are among the most intriguing and long-standing questions in centromere biology. We identified eight satellite repeats in the centromeres of tetraploid switchgrass (Panicum virgatum). Seven repeats showed characteristics associated with classical centromeric repeats with monomeric lengths ranging from 166 to 187 bp. Interestingly, these repeats share an 80-bp DNA motif. We demonstrate that this 80-bp motif may dictate translational and rotational phasing of the centromeric repeats with the cenH3 nucleosomes. The sequence of the last centromeric repeat, Pv156, is identical to the 5S ribosomal RNA genes. We demonstrate that a 5S ribosomal RNA gene array was recruited to be the functional centromere for one of the switchgrass chromosomes. Our findings reveal that certain types of satellite repeats, which are associated with unique sequence features and are composed of monomers in mono-nucleosomal length, are favorable for centromeres. Centromeric repeats may undergo dynamic amplification and adaptation before the centromeres in the same species become dominated by the best adapted satellite repeat.© 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.


September 22, 2019

Insect symbionts as valuable grist for the biotechnological mill: an alkaliphilic silkworm gut bacterium for efficient lactic acid production.

Insects constitute the most abundant and diverse animal class and act as hosts to an extraordinary variety of symbiotic microorganisms. These microbes living inside the insects play critical roles in host biology and are also valuable bioresources. Enterococcus mundtii EMB156, isolated from the larval gut (gut pH >10) of the model organism Bombyx mori (Lepidoptera: Bombycidae), efficiently produces lactic acid, an important metabolite for industrial production of bioplastic materials. E. mundtii EMB156 grows well under alkaline conditions and stably converts various carbon sources into lactic acid, offering advantages in downstream fermentative processes. High-yield lactic acid production can be achieved by the strain EMB156 from renewable biomass substrates under alkaline pretreatments. Single-molecule real-time (SMRT) sequencing technology revealed its 3.01 Mbp whole genome sequence. A total of 2956 protein-coding sequences, 65 tRNA genes, and 6 rRNA operons were predicted in the EMB156 chromosome. Remarkable genomic features responsible for lactic acid fermentation included key enzymes involved in the pentose phosphate (PP)/glycolytic pathway, and an alpha amylase and xylose isomerase were characterized in EMB156. This genomic information coincides with the phenotype of E. mundtii EMB156, reflecting its metabolic flexibility in efficient lactate fermentation, and established a foundation for future biotechnological application. Interestingly, enzyme activities of amylase were quite stable in high-pH broths, indicating a possible mechanism for strong EMB156 growth in an alkaline environment, thereby facilitating lactic acid production. Together, these findings implied that valuable lactic acid-producing bacteria can be discovered efficiently by screening under the extremely alkaline conditions, as exemplified by gut microbial symbionts of Lepidoptera insects.


September 22, 2019

Long-read sequencing data analysis for yeasts.

Long-read sequencing technologies have become increasingly popular due to their strengths in resolving complex genomic regions. As a leading model organism with small genome size and great biotechnological importance, the budding yeast Saccharomyces cerevisiae has many isolates currently being sequenced with long reads. However, analyzing long-read sequencing data to produce high-quality genome assembly and annotation remains challenging. Here, we present a modular computational framework named long-read sequencing data analysis for yeasts (LRSDAY), the first one-stop solution that streamlines this process. Starting from the raw sequencing reads, LRSDAY can produce chromosome-level genome assembly and comprehensive genome annotation in a highly automated manner with minimal manual intervention, which is not possible using any alternative tool available to date. The annotated genomic features include centromeres, protein-coding genes, tRNAs, transposable elements (TEs), and telomere-associated elements. Although tailored for S. cerevisiae, we designed LRSDAY to be highly modular and customizable, making it adaptable to virtually any eukaryotic organism. When applying LRSDAY to an S. cerevisiae strain, it takes ~41 h to generate a complete and well-annotated genome from ~100× Pacific Biosciences (PacBio) running the basic workflow with four threads. Basic experience working within the Linux command-line environment is recommended for carrying out the analysis using LRSDAY.


September 22, 2019

The genome of Artemisia annua provides insight into the evolution of Asteraceae family and artemisinin biosynthesis.

Artemisia annua, commonly known as sweet wormwood or Qinghao, is a shrub native to China and has long been used for medicinal purposes. A. annua is now cultivated globally as the only natural source of a potent anti-malarial compound, artemisinin. Here, we report a high-quality draft assembly of the 1.74-gigabase genome of A. annua, which is highly heterozygous, rich in repetitive sequences, and contains 63 226 protein-coding genes, one of the largest numbers among the sequenced plant species. We found that, as one of a few sequenced genomes in the Asteraceae, the A. annua genome contains a large number of genes specific to this large angiosperm clade. Notably, the expansion and functional diversification of genes encoding enzymes involved in terpene biosynthesis are consistent with the evolution of the artemisinin biosynthetic pathway. We further revealed by transcriptome profiling that A. annua has evolved the sophisticated transcriptional regulatory networks underlying artemisinin biosynthesis. Based on comprehensive genomic and transcriptomic analyses we generated transgenic A. annua lines producing high levels of artemisinin, which are now ready for large-scale production and thereby will help meet the challenge of increasing global demand of artemisinin. Copyright © 2018 The Author. Published by Elsevier Inc. All rights reserved.


September 22, 2019

Pm21 from Haynaldia villosa encodes a CC-NBS-LRR protein conferring powdery mildew resistance in wheat.

Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a destructive disease of wheat throughout the world. One of the most important environmental-friendly and economical methods to reduce wheat loss caused by Bgt is to develop highly resistant varieties (Kuraparthy et al., 2007). Pm21 from the wild species Haynaldia villosa (also known as Dasypyrum villosum) confers high resistance to Bgt in wheat throughout all growth stages. It has now become one of the most highly effective genetic loci introgressed into wheat from wild species, and the commercial varieties harboring Pm21 have been widely used in wheat production with more than 4 million hectares in China.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.