Menu
July 7, 2019  |  

Genomic analysis of Bacillus licheniformis CBA7126 isolated from a human fecal sample.

Bacillus licheniformis is a Gram-positive, endospore-forming, saprophytic organism that occurs in plant and soil (Veith et al., 2004). A taxonomical approach shows that it is closely related to Bacillus subtilis (Lapidus et al., 2002; Xu and Côte, 2003; Rey et al., 2004). Generally, most bacilli are predominantly aerobic; however, B. licheniformis is a facultative anaerobe compared to other bacilli in ecological niches (Alexander, 1977). The commercial utility of the extracellular products of B. licheniformis makes this microorganism an economically interesting species (Kovács et al., 2009). For example, B. licheniformis is used industrially for manufacturing biochemicals, enzymes, antibiotics, and aminopeptidase. Several proteases such as a-amylase, penicillinase, pentosanase, cycloglucosyltransferase, ß-mannanase, and certain pectinolytic enzymes are synthesized industrially using B. licheniformis (Rodríguez-Absi and Prescott, 1978; Rey et al., 2004). The proteases are used in the detergent industry and the amylases are utilized for starch hydrolysis, desizing of textiles, and sizing of paper (Erickson, 1976). In addition, certain strains are utilized to produce peptide antibiotics, specialty chemicals, and poly-?-glutamic acid (Nierman and Maglott, 1989; Rey et al., 2004).


July 7, 2019  |  

Genomic analysis of a pathogenic bacterium, Paeniclostridium sordellii CBA7122 containing the highest number of rRNA operons, isolated from a human stool sample.

Paeniclostridium sordellii was first isolated by Alfredo Sordelli in 1922 under the proposed name Bacillus oedematis, and was then renamed Bacillus sordellii in 1927 (Hall and Scott, 1927). Two years later, it was classified as Clostridium sordellii (Hall et al., 1929). Recently, this bacterium was reclassified as a species of the genus Paeniclostridium, named P. sordellii comb. nov. (Sasi Jyothsna et al., 2016). P. sordellii is an anaerobic, Gram-stain-positive, spore-forming rod bacterium with flagella. Most strains are non-pathogenic, but some strains have been associated with severe infections of humans and animals. In humans, P. sordellii is mainly associated with trauma, toxic shock, soft tissue skin infections, and gynecologic infections. Despite the serious consequences of infection with P. sordellii, treatment is difficult because of the rapid progression from recognition of the first symptoms to death (Aldape et al., 2006).


July 7, 2019  |  

Complete genome sequence of Celeribacter marinus IMCC12053(T), the host strain of marine bacteriophage P12053L.

Isolated from coastal seawater from Yellow Sea of Korea, Celeribacter marinus IMCC12053 was used as the host bacterium for bacteriophage P12053L. Here we report the complete genome sequence of strain IMCC12053 for further study of the marine bacteriophage P12053L functional genes. Single molecule real-time technology (PacBio RSII) was used for the single circular chromosome that is 3,096,705 base pairs in length and the GC content is 56.24%. It contains 3155 ORFs with 45 tRNAs and 6 rRNAs genes. N(6)-methyladenosine patterns were also investigated for 32 unmethylated genes and intergenic regions that covered many regulators and phage genes as well as ribosomal RNA genes and tRNA genes. Cryptic N(4)-methylcytosine pattern was investigated to speculate GpC methylase activity throughout the genome. Comparative genomics with other Celeribacter genomes were carried out for polyaromatic hydrocarbon degradation, but there were no aromatic ring oxygenases in IMCC12053 when compared to Celeribacter indicus P73. Copyright © 2015 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome sequence of Staphylococcus equorum KS1039 isolated from Saeu-jeotgal, Korean high-salt-fermented seafood.

Staphylococcus equorum KS1039 was isolated from a form of traditional Korean high-salt-fermented seafood called Saeu-jeotgal, and exhibited growth at a NaCl (w/v) concentration of 25%. Comparative genome analyses with two other strains revealed the presence of two potassium voltage-gated channel genes uniquely in KS1039, which might be involved in salt tolerance. This first complete genome sequence of the species will increase our understanding of the genetic factors allowing it to be safely consumed by humans and to inhabit high-salt environments. Copyright © 2015 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome of Zhongshania aliphaticivorans SM-2(T), an aliphatic hydrocarbon-degrading bacterium isolated from tidal flat sediment.

Zhongshania aliphaticivorans SM-2(T), a degrader of aliphatic hydrocarbons, is a Gram-negative, rod-shaped, flagellated, facultatively aerobic bacterium. Here, we report the genome sequence of strain SM-2(T), which has a size of 4,204,359bp with 44 tRNAs, 9 rRNAs, and 3664 protein-coding genes. In addition, several genes encoding aliphatic hydrocarbon degraders (alkane 1-monooxygenase, haloalkane dehalogenase, and cytochrome P450) were detected in the genome shedding light on the function of pollutants degradation. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome sequence of Halocynthiibacter arcticus PAMC 20958(T) from an Arctic marine sediment sample.

Here, we present the first complete genome sequence of the strain PAMC 20958(T) from the genus Halocynthiibacter. Halocynthiibacter arcticus PAMC 20958(T), isolated from a marine sediment of the Arctic, is a gram-negative, aerobic, and rod-shaped bacterium. The complete genome contains 4,329,554 base pairs with 53.21% GC content and a 44,566 base pair plasmid with 48.72% GC content. This genome contained genes encoding alkaline phosphatase and lipase, and genes that confer resistance to arsenic, cadmium, tellurite, and acriflavin. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome sequence of Vibrio parahaemolyticus FORC_023 isolated from raw fish storage water.

Vibrio parahaemolyticusis a Gram-negative halophilic bacterium that causes food-borne gastroenteritis in humans who consumeV. parahaemolyticus-contaminated seafood.The FORC_023 strain was isolated from raw fish storage water, containing live fish at a sashimi restaurant. Here, we aimed to sequence and characterize the genome of the FORC_023 strain. The genome of the FORC_023 strain showed two circular chromosomes, which contained 4227 open reading frames (ORFs), 131 tRNA genes and 37 rRNA genes. Although the genome of FORC_023 did not include major virulence genes, such as genes encoding thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH), it contained genes encoding other hemolysins, secretion systems, iron uptake-related proteins and severalV. parahaemolyticusislands. The highest average nucleotide identity value was obtained between the FORC_023 strain and UCM-V493 (CP007004-6). Comparative genomic analysis of FORC_023 with UCM-V493 revealed that FORC_023 carried an additional genomic region encoding virulence factors, such as repeats-in-toxin and type II secretion factors. Furthermore,in vitrocytotoxicity testing showed that FORC_023 exhibited a high level of cytotoxicity toward INT-407 human epithelial cells. These results suggested that the FORC_023 strain may be a food-borne pathogen.© FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.


July 7, 2019  |  

Complete genome sequence of cold-adapted enzyme producing Microbulbifer thermotolerans DAU221.

Microbulbifer thermotolerans DAU221 was preliminary isolated from the marine sediment samples in the Republic of Korea. Here, we present the complete genome sequence of M. thermotolerans DAU221, which consisted of 3,938,396 base pairs with a GC content of 56.57%. This genomic information should help us find the industrially useful enzymes. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome sequence of Vibrio vulnificus FORC_017 isolated from a patient with a hemorrhagic rash after consuming raw dotted gizzard shad.

Vibrio vulnificus, a resident in the human gut, is frequently found in seafood, causing food-borne illnesses including gastroenteritis and severe septicemia. While V. vulnificus has been known to be one of the major food-borne pathogens, pathogenicity and virulence factors are not fully understood yet. To extend our understanding of the pathogenesis of V. vulnificus at the genomic level, the genome of V. vulnificus FORC_017 isolated from a female patient experiencing a hemorrhagic rash was completely sequenced and analyzed.Three discontinuous contigs were generated from a hybrid assembly using Illumina MiSeq and PacBio platforms, revealing that the genome of the FORC_017 consists of two circular chromosomes and a plasmid. Chromosome I consists of 3,253,417-bp (GC content 46.49 %) containing 2943 predicted open reading frames (ORFs) and chromosome II of 1,905,745-bp (GC content 46.90 %) containing 1638 ORFs. The plasmid pFORC17 consists of 70,069-bp (GC content 43.77 %) containing 84 ORFs. The average nucleotide identity (ANI) value of the FORC_017 and CMCP6 strains was 98.53, suggesting that they are closely related.Pathogenesis-associated genes including vvhA, rtx gene cluster, and various hemolysin genes were present in FORC_017. In addition, three complete secretion systems (Type I, II and VI) as well as iron uptake-related genes for virulence of the FORC_017 were detected, suggesting that this strain is pathogenic. Further comparative genome analysis revealed that FORC_017 and CMCP6 share major toxin genes including vvhA and rtx for pathogenesis activities. The genome information of the FORC_017 provides novel insights into pathogenicity and virulence factors of V. vulnificus.


July 7, 2019  |  

Draft genome sequence of Escherichia coli S51, a chicken isolate harboring a chromosomally encoded mcr-1 gene.

We present the draft genome of Escherichia coli S51, a colistin-resistant extended-spectrum ß-lactamase-producing strain isolated in 2015 from raw chicken meat imported from Germany. Assembly and annotation of this draft genome resulted in a 4,994,918-bp chromosome and revealed a chromosomally encoded mcr-1 gene responsible for the colistin resistance of the strain. Copyright © 2016 Zurfluh et al.


July 7, 2019  |  

Full-genome sequence of Escherichia coli K-15KW01, a uropathogenic E. coli B2 sequence type 127 isolate harboring a chromosomally carried blaCTX-M-15 gene.

We present here the full-genome sequence of Escherichia coli K-15KW01, an extended-spectrum-ß-lactamase-producing uropathogenic strain. Assembly and annotation of the draft genome resulted in a 5,154,641-bp chromosome and revealed a chromosomally contained blaCTX-M-15 gene embedded at the right-hand extremity of an ISEcp1 element in a plasmid-like structure (36,907 bp). Copyright © 2016 Zurfluh et al.


July 7, 2019  |  

Characterization of the mechanism of prolonged adaptation to osmotic stress of Jeotgalibacillus malaysiensis via genome and transcriptome sequencing analyses.

Jeotgalibacillus malaysiensis, a moderate halophilic bacterium isolated from a pelagic area, can endure higher concentrations of sodium chloride (NaCl) than other Jeotgalibacillus type strains. In this study, we therefore chose to sequence and assemble the entire J. malaysiensis genome. This is the first report to provide a detailed analysis of the genomic features of J. malaysiensis, and to perform genetic comparisons between this microorganism and other halophiles. J. malaysiensis encodes a native megaplasmid (pJeoMA), which is greater than 600 kilobases in size, that is absent from other sequenced species of Jeotgalibacillus. Subsequently, RNA-Seq-based transcriptome analysis was utilised to examine adaptations of J. malaysiensis to osmotic stress. Specifically, the eggNOG (evolutionary genealogy of genes: Non-supervised Orthologous Groups) and KEGG (Kyoto Encyclopaedia of Genes and Genomes) databases were used to elucidate the overall effects of osmotic stress on the organism. Generally, saline stress significantly affected carbohydrate, energy, and amino acid metabolism, as well as fatty acid biosynthesis. Our findings also indicate that J. malaysiensis adopted a combination of approaches, including the uptake or synthesis of osmoprotectants, for surviving salt stress. Among these, proline synthesis appeared to be the preferred method for withstanding prolonged osmotic stress in J. malaysiensis.


July 7, 2019  |  

Genome sequence of a commensal bacterium, Enterococcus faecalis CBA7120, isolated from a Korean fecal sample.

Enterococcus faecalis, the type strain of the genus Enterococcus, is not only a commensal bacterium in the gastrointestinal tract in vertebrates and invertebrates, but also causes serious disease as an opportunistic pathogen. To date, genome sequences have been published for over four hundred E. faecalis strains; however, pathogenicity of these microbes remains complicated. To increase our knowledge of E. faecalis virulence factors, we isolated strain CBA7120 from the feces of an 81-year-old female from the Republic of Korea and performed a comparative genomic analysis.The genome sequence of E. faecalis CBA7120 is 3,134,087 bp in length, with a G + C content of 37.35 mol%, and is comprised of four contigs with an N50 value of 2,922,046 bp. The genome showed high similarity with other strains of E. faecalis, including OG1RF, T13, 12107 and T20, based on OrthoANI values. Strain CBA7120 contains 374 pan-genome orthologous groups (POGs) as singletons, including “Phages, Prophages, Transposable elements, Plasmids,” “Carbohydrates,” “DNA metabolism,” and “Virulence, Disease and Defense” subsystems. Genes related to multidrug resistance efflux pumps were annotated in the genome.The comparative genomic analysis of E. faecalis strains presented in this study was performed using a variety of analysis methods and will facilitate future identification of hypothetical proteins.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.