Menu
July 7, 2019  |  

Complete genome sequence of Chryseobacterium camelliae Dolsongi-HT1, a green tea isolate with keratinolytic activity.

The complete genome sequence of Chryseobacterium camelliae Dolsongi-HT1 is reported here. C. camelliae Dolsongi-HT1, having keratinolytic activity, was isolated from green tea leaves in the Dolsongi tea garden in Jeju, South Korea. The strain Dolsongi-HT1 has 28 candidate protease genes, which may be utilized in further studies and industrial applications of keratinase. Copyright © 2018 Kim et al.


July 7, 2019  |  

Complete genome sequence of uropathogenic Escherichia coli isolate UPEC 26-1.

Urinary tract infections (UTIs) are among the most common infections in humans, predominantly caused by uropathogenic Escherichia coli (UPEC). The diverse genomes of UPEC strains mostly impede disease prevention and control measures. In this study, we comparatively analyzed the whole genome sequence of a highly virulent UPEC strain, namely UPEC 26-1, which was isolated from urine sample of a patient suffering from UTI in Korea. Whole genome analysis showed that the genome consists of one circular chromosome of 5,329,753 bp, comprising 5064 protein-coding genes, 122 RNA genes (94 tRNA, 22 rRNA and 6 ncRNA genes), and 100 pseudogenes, with an average G+C content of 50.56%. In addition, we identified 8 prophage regions comprising 5 intact, 2 incomplete and 1 questionable ones and 63 genomic islands, suggesting the possibility of horizontal gene transfer in this strain. Comparative genome analysis of UPEC 26-1 with the UPEC strain CFT073 revealed an average nucleotide identity of 99.7%. The genome comparison with CFT073 provides major differences in the genome of UPEC 26-1 that would explain its increased virulence and biofilm formation. Nineteen of the total GIs were unique to UPEC 26-1 compared to CFT073 and nine of them harbored unique genes that are involved in virulence, multidrug resistance, biofilm formation and bacterial pathogenesis. The data from this study will assist in future studies of UPEC strains to develop effective control measures.


July 7, 2019  |  

Paucibacter aquatile sp. nov. isolated from freshwater of the Nakdong River, Republic of Korea.

A Gram-negative, aerobic, motile, and rod-shaped bacterial strain designated CR182T was isolated from freshwater of the Nakdong River, Republic of Korea. Optimal growth conditions for this novel strain were found to be: 25-30 °C, pH 6.5-8.5, and 3% (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequence indicates that the strain CR182T belongs to type strains of genus Paucibacter. Strain CR182T showed 98.0% 16S rRNA gene sequence similarity with Paucibacter oligotrophus CHU3T and formed a robust phylogenetic clade with this species. The average nucleotide identity value between strain CR182T and P. oligotrophus CHU3T was 78.4% and the genome-to-genome distance was 22.2% on average. The genomic DNA G+C content calculated from the genome sequence was 66.3 mol%. Predominant cellular fatty acids of strain CR182T were summed feature 3 (C16:1 ?7c and/or C16:1 ?6c) (31.2%) and C16:0 (16.0%). Its major respiratory quinine was ubiquinone Q-8. Its polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, and two unidentified phospholipids. Its genomic DNA G+C content was 66.3%. Based on data obtained from this polyphasic taxonomic study, strain CR182T represents a novel species belonging to genus Paucibacter, for which a name of P. aquatile sp. nov. is proposed. The type strain is CR182T (=?KCCM 90284T?=?NBRC 113032T).


July 7, 2019  |  

Draft genome sequence of Paucibacter aquatile CR182T, a strain with antimicrobial activity isolated from freshwater of Nakdong River in South Korea.

This report details a draft genome sequence of Paucibacter aquatile CR182T, isolated from river water, which contains 5,523,543?bp, has a G+C content of 66.3%, and harbors 4,544 protein-coding genes in 4 contigs. These genome data provide insights into the genetic basis of this strain’s antibacterial activity and adaptive mechanisms. Copyright © 2018 Chung et al.


July 7, 2019  |  

Draft genome sequence of a bacterial plant pathogen Erwinia pyrifoliae strain EpK1/15 isolated from an apple twig showing black shoot blight

Erwinia pyrifoliae is a Gram-negative bacterium causing black shoot blight in apple and Asian pear trees. E. pyrifoliae strain EpK1/15 was isolated in 2014 from an apple twig from the Pocheon, Gyeonggi-do, South Korea. In this study, we report the draft genome sequence of E. pyrifoliae EpK1/15 using PacBio RS II platform. The draft genome is comprised of a circular chromosome with 4,027,225 bp and 53.4% G + C content and a plasmid with 48,456 bp and 50.3% G + C content. The draft genome includes 3,798 protein-coding genes, 22 rRNA genes, 77 tRNA genes, 13 non-coding RNA genes, and 231 pseudo genes.


July 7, 2019  |  

Draft genome sequence of Streptomyces sp. P3 isolated from potato scab diseased tubers

Streptomyces sp. P3 was isolated from potato scab diseased tubers in Pyeongchang, Gangwon-do, Republic of Korea in 2017. Here, we report the draft genome sequences of P3 with 9,851,971 bp size (71.2% GC content) of the chromosome. The genome comprises 8,548 CDS, 18 rRNA and 66 tRNA genes. Although strain P3 did not show pathogenicity both potato tuber assay and radish seedling assay, it possesses tomatinase (tomA) gene among conserved pathogenicity-related genes in well characterized pathogenic Streptomyces. Thus, the genome sequences determined in this study will be useful to understand for pathogenic evolution in Streptomyces species, which already adapted to potato scab pathogens.


July 7, 2019  |  

Complete genome sequence of biofilm-producing strain Staphylococcus xylosus S170

Here we report the complete genome sequence of Staphylococcus xylosus S170, strong biofilm-producing strain, which comprised a single circular 2,910,005 bp chromosome and 32.97% G + C content. The genome included 2,674 protein-coding sequences, 22 rRNA genes, and 57 tRNA genes. Gene analysis of S. xylosus S170 could contribute to better understanding of biofilm-forming mechanisms.


July 7, 2019  |  

Complete genome sequence of the endophytic bacterium Chryseobacterium indologenes PgBE177, isolated from Panax quinquefolius.

Chryseobacterium indologenes PgBE177, isolated from the root tissue of a 4-year-old Panax quinquefolius plant, showed antagonistic activity against Pseu- domonas syringae pv. tomato DC3000, a bacterial pathogen. Here, we report the whole-genome sequence of C. indologenes PgBE177. The bacterium contains bacteri- ocin gene clusters and has the potential to stimulate plant growth.


July 7, 2019  |  

Draft genome sequence of Olsenella sp. KGMB 04489 isolated from healthy Korean human feces

The genus of Olsenella has been isolated from vertebrate animal mouth, rumen, and feces. Olsenella sp. KGMB 04489 was isolated from fecal samples obtained from a healthy Korean. The whole-genome sequence of Olsenella sp. KGMB 04489 was analyzed using the PacBio Sequel platform. The genome comprises a 2,108,034 bp chromosome with a G + C content of 65.50%, 1,838 total genes, 13 rRNA genes, and 52 tRNA genes. Also, we found that strain KGMB 04489 had some genes for hydrolysis enzymes, and antibiotic biosynthesis and resistance in its genome based on the result of genome analysis.


July 7, 2019  |  

Complete genome sequence of Bacillus licheniformis strain 0DA23-1, a potential starter culture candidate for soybean fermentation

Bacillus licheniformis strain 0DA23-1, a potential fermentation starter candidate, was isolated from doenjang, a Korean high-salt-fermented soybean food. Strain 0DA23-1 contains a single circular 4,405,373-bp chromosome with a G + C content of 45.96%. The complete genome of strain 0DA23-1 does not include any of the virulence factors found in the well-known pathogens Bacillus cereus and Staphylococcus aureus. Additionally, no genes associated with resistance to eight antibiotics (chloramphenicol, clindamycin, erythromycin, gentamicin, kanamycin, streptomycin, tetracycline, and vancomycin), hemolysis, or biofilm formation were identified.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.