Menu
July 7, 2019

Evidence for an opportunistic and endophytic lifestyle of the Bursaphelenchus xylophilus-associated bacteria Serratia marcescens PWN146 isolated from wilting Pinus pinaster.

Pine wilt disease (PWD) results from the interaction of three elements: the pathogenic nematode, Bursaphelenchus xylophilus; the insect-vector, Monochamus sp.; and the host tree, mostly Pinus species. Bacteria isolated from B. xylophilus may be a fourth element in this complex disease. However, the precise role of bacteria in this interaction is unclear as both plant-beneficial and as plant-pathogenic bacteria may be associated with PWD. Using whole genome sequencing and phenotypic characterization, we were able to investigate in more detail the genetic repertoire of Serratia marcescens PWN146, a bacterium associated with B. xylophilus. We show clear evidence that S. marcescens PWN146 is able to withstand and colonize the plant environment, without having any deleterious effects towards a susceptible host (Pinus thunbergii), B. xylophilus nor to the nematode model C. elegans. This bacterium is able to tolerate growth in presence of xenobiotic/organic compounds, and use phenylacetic acid as carbon source. Furthermore, we present a detailed list of S. marcescens PWN146 potentials to interfere with plant metabolism via hormonal pathways and/or nutritional acquisition, and to be competitive against other bacteria and/or fungi in terms of resource acquisition or production of antimicrobial compounds. Further investigation is required to understand the role of bacteria in PWD. We have now reinforced the theory that B. xylophilus-associated bacteria may have a plant origin.


July 7, 2019

Complete Genome Sequence of Mycobacterium avium, Isolated from Commercial Domestic Pekin Ducks (Anas platyrhynchos domestica), Determined Using PacBio Single-Molecule Real-Time Technology

Mycobacterium avium is an important pathogenic bacterium in birds and has never, to our knowledge, reported to be isolated from domestic ducks. We present here the complete genome sequence of a virulent strain of Mycobacterium avium, isolated from domestic Pekin ducks for the first time, which was determined by PacBio single-molecule real-time technology. Copyright © 2016 Song et al.


July 7, 2019

Complete Genome Sequences of Four Enterohemolysin-Positive (ehxA) Enterocyte Effacement-Negative Shiga Toxin-Producing Escherichia coli Strains

Shiga toxin-producing Escherichia coli (STEC) strains are important foodborne pathogens associated with human disease. Most disease-associated STEC strains carry the locus of enterocyte effacement (LEE); however, regularly LEE-negative STEC strains are recovered from ill patients. Few reference sequences are available for these isolate types. Here, we report here the complete genome sequences for four LEE-negative STEC strains. Copyright © 2016 Lorenz et al.


July 7, 2019

First complete genome sequence of the skin-improving Lactobacillus curvatus strain FBA2, isolated from fermented vegetables, determined by PacBio single-molecule real-time technology.

The first complete genome sequence of Lactobacillus curvatus was determined by PacBio RS II. The single circular chromosome (1,848,756 bp, G+C content of 42.1%) of L. curvatus FBA2, isolated from fermented vegetables, contained low G+C regions (26.9% minimum) and 43 sets of >1,000-bp identical sequence pairs. No plasmids were detected. Copyright © 2016 Nakano et al.


July 7, 2019

Draft genome sequence of Mycobacterium rufum JS14(T), a polycyclic-aromatic-hydrocarbon-degrading bacterium from petroleum-contaminated soil in Hawaii.

Mycobacterium rufum JS14(T) (=ATCC BAA-1377(T), CIP 109273(T), JCM 16372(T), DSM 45406(T)), a type strain of the species Mycobacterium rufum sp. . belonging to the family Mycobacteriaceae, was isolated from polycyclic aromatic hydrocarbon (PAH)-contaminated soil in Hilo (HI, USA) because it harbors the capability of degrading PAH. Here, we describe the first genome sequence of strain JS14(T), with brief phenotypic characteristics. The genome is composed of 6,176,413 bp with 69.25 % G?+?C content and contains 5810 protein-coding genes with 54 RNA genes. The genome information on M. rufum JS14(T) will provide a better understanding of the complexity of bacterial catabolic pathways for degradation of specific chemicals.


July 7, 2019

High quality draft genome sequence of the type strain of Pseudomonas lutea OK2(T), a phosphate-solubilizing rhizospheric bacterium.

Pseudomonas lutea OK2(T) (=LMG 21974(T), CECT 5822(T)) is the type strain of the species and was isolated from the rhizosphere of grass growing in Spain in 2003 based on its phosphate-solubilizing capacity. In order to identify the functional significance of phosphate solubilization in Pseudomonas Plant growth promoting rhizobacteria, we describe here the phenotypic characteristics of strain OK2(T) along with its high-quality draft genome sequence, its annotation, and analysis. The genome is comprised of 5,647,497 bp with 60.15 % G?+?C content. The sequence includes 4,846 protein-coding genes and 95 RNA genes.


July 7, 2019

Complete genome of the starch-degrading myxobacteria Sandaracinus amylolyticus DSM 53668T.

Myxobacteria are members of d-proteobacteria and are typified by large genomes, well-coordinated social behavior, gliding motility, and starvation-induced fruiting body formation. Here, we report the 10.33 Mb whole genome of a starch-degrading myxobacterium Sandaracinus amylolyticus DSM 53668(T) that encodes 8,962 proteins, 56 tRNA, and two rRNA operons. Phylogenetic analysis, in silico DNA-DNA hybridization and average nucleotide identity reveal its divergence from other myxobacterial species and support its taxonomic characterization into a separate family Sandaracinaceae, within the suborder Sorangiineae. Sequence similarity searches using the Carbohydrate-active enzymes (CAZyme) database help identify the enzyme repertoire of S. amylolyticus involved in starch, agar, chitin, and cellulose degradation. We identified 16 a-amylases and two ?-amylases in the S. amylolyticus genome that likely play a role in starch degradation. While many of the amylases are seen conserved in other d-proteobacteria, we notice several novel amylases acquired via horizontal transfer from members belonging to phylum Deinococcus-Thermus, Acidobacteria, and Cyanobacteria. No agar degrading enzyme(s) were identified in the S. amylolyticus genome. Interestingly, several putative ß-glucosidases and endoglucanases proteins involved in cellulose degradation were identified. However, the absence of cellobiohydrolases/exoglucanases corroborates with the lack of cellulose degradation by this bacteria. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


July 7, 2019

Genome sequence and analysis of Peptoclostridium difficile strain ZJCDC-S82.

Peptoclostridium difficile (Clostridium difficile) is the major pathogen associated with infectious diarrhea in humans. Concomitant with the increased incidence of C. difficile infection worldwide, there is an increasing concern regarding this infection type. This study reports a draft assembly and detailed sequence analysis of C. difficile strain ZJCDC-S82. The de novo assembled genome was 4.19 Mb in size, which includes 4,013 protein-coding genes, 41 rRNA genes, and 84 tRNA genes. Along with the nuclear genome, we also assembled sequencing information for a single plasmid consisting of 11,930 nucleotides. Comparative genomic analysis of C. difficile ZJCDC-S82 and two other previously published strains, such as M120 and CD630, showed extensive similarity. Phylogenetic analysis revealed that genetic diversity among C. difficile strains was not influenced by geographic location. Evolutionary analysis suggested that four genes encoding surface proteins exhibited positive selection in C. difficile ZJCDC-S82. Codon usage analysis indicated that C. difficile ZJCDC-S82 had high codon usage bias toward A/U-ended codons. Furthermore, codon usage patterns in C. difficile ZJCDC-S82 were predominantly affected by mutation pressure. Our results provide detailed information pertaining to the C. difficile genome associated with a strain from mainland China. This analysis will facilitate the understanding of genomic diversity and evolution of C. difficile strains in this region.


July 7, 2019

Improved complete genome sequence of the extremely radioresistant bacterium Deinococcus radiodurans R1 obtained using PacBio single-molecule sequencing.

The genome sequence of Deinococcus radiodurans R1 was published in 1999. We resequenced D. radiodurans R1 using PacBio and compared the sequence with the published one. Large insertions and single nucleotide polymorphisms (SNPs) were observed among the genome sequences. A more accurate genome sequence will be helpful to studies of D. radiodurans. Copyright © 2016 Hua and Hua.


July 7, 2019

The Lysobacter capsici AZ78 genome has a gene pool enabling it to interact successfully with phytopathogenic microorganisms and environmental factors.

Lysobacter capsici AZ78 has considerable potential for biocontrol of phytopathogenic microorganisms. However, lack of information about genetic cues regarding its biological characteristics may slow down its exploitation as a biofungicide. In order to obtain a comprehensive overview of genetic features, the L. capsici AZ78 genome was sequenced, annotated and compared with the phylogenetically related pathogens Stenotrophomonas malthophilia K729a and Xanthomonas campestris pv. campestris ATCC 33913. Whole genome comparison, supported by functional analysis, indicated that L. capsici AZ78 has a larger number of genes responsible for interaction with phytopathogens and environmental stress than S. malthophilia K729a and X. c. pv. campestris ATCC 33913. Genes involved in the production of antibiotics, lytic enzymes and siderophores were specific for L. capsici AZ78, as well as genes involved in resistance to antibiotics, environmental stressors, fungicides and heavy metals. The L. capsici AZ78 genome did not encompass genes involved in infection of humans and plants included in the S. malthophilia K729a and X. c. pv. campestris ATCC 33913 genomes, respectively. The L. capsici AZ78 genome provides a genetic framework for detailed analysis of other L. capsici members and the development of novel biofungicides based on this bacterial strain.


July 7, 2019

Whole genomic sequence analysis of Bacillus infantis: defining the genetic blueprint of strain NRRL B-14911, an emerging cardiopathogenic microbe.

We recently reported the identification of Bacillus sp. NRRL B-14911 that induces heart autoimmunity by generating cardiac-reactive T cells through molecular mimicry. This marine bacterium was originally isolated from the Gulf of Mexico, but no associations with human diseases were reported. Therefore, to characterize its biological and medical significance, we sought to determine and analyze the complete genome sequence of Bacillus sp. NRRL B-14911.Based on the phylogenetic analysis of 16S ribosomal RNA (rRNA) genes, sequence analysis of the 16S-23S rDNA intergenic transcribed spacers, phenotypic microarray, and matrix-assisted laser desorption ionization time-of-flight mass spectrometry, we propose that this organism belongs to the species Bacillus infantis, previously shown to be associated with sepsis in a newborn child. Analysis of the complete genome of Bacillus sp. NRRL B-14911 revealed several virulence factors including adhesins, invasins, colonization factors, siderophores and transporters. Likewise, the bacterial genome encodes a wide range of methyl transferases, transporters, enzymatic and biochemical pathways, and insertion sequence elements that are distinct from other closely related bacilli.The complete genome sequence of Bacillus sp. NRRL B-14911 provided in this study may facilitate genetic manipulations to assess gene functions associated with bacterial survival and virulence. Additionally, this bacterium may serve as a useful tool to establish a disease model that permits systematic analysis of autoimmune events in various susceptible rodent strains.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.