Menu
July 7, 2019

Comparative genomics reveals insights into avian genome evolution and adaptation.

Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits. Copyright © 2014, American Association for the Advancement of Science.


July 7, 2019

In transition: primate genomics at a time of rapid change.

The field of nonhuman primate genomics is undergoing rapid change and making impressive progress. Exploiting new technologies for DNA sequencing, researchers have generated new whole-genome sequence assemblies for multiple primate species over the past 6 years. In addition, investigations of within-species genetic variation, gene expression and RNA sequences, conservation of non-protein-coding regions of the genome, and other aspects of comparative genomics are moving at an accelerating speed. This progress is opening a wide array of new research opportunities in the analysis of comparative primate genome content and evolution. It also creates new possibilities for the use of nonhuman primates as model organisms in biomedical research. This transition, based on both new technology and the new information being generated in regard to human genetics, provides an important justification for reevaluating the research goals, strategies, and study designs used in primate genetics and genomics.


July 7, 2019

Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species.

The process of generating raw genome sequence data continues to become cheaper, faster, and more accurate. However, assembly of such data into high-quality, finished genome sequences remains challenging. Many genome assembly tools are available, but they differ greatly in terms of their performance (speed, scalability, hardware requirements, acceptance of newer read technologies) and in their final output (composition of assembled sequence). More importantly, it remains largely unclear how to best assess the quality of assembled genome sequences. The Assemblathon competitions are intended to assess current state-of-the-art methods in genome assembly.In Assemblathon 2, we provided a variety of sequence data to be assembled for three vertebrate species (a bird, a fish, and snake). This resulted in a total of 43 submitted assemblies from 21 participating teams. We evaluated these assemblies using a combination of optical map data, Fosmid sequences, and several statistical methods. From over 100 different metrics, we chose ten key measures by which to assess the overall quality of the assemblies.Many current genome assemblers produced useful assemblies, containing a significant representation of their genes and overall genome structure. However, the high degree of variability between the entries suggests that there is still much room for improvement in the field of genome assembly and that approaches which work well in assembling the genome of one species may not necessarily work well for another.


July 7, 2019

Next-generation sequencing and large genome assemblies.

The next-generation sequencing (NGS) revolution has drastically reduced time and cost requirements for sequencing of large genomes, and also qualitatively changed the problem of assembly. This article reviews the state of the art in de novo genome assembly, paying particular attention to mammalian-sized genomes. The strengths and weaknesses of the main sequencing platforms are highlighted, leading to a discussion of assembly and the new challenges associated with NGS data. Current approaches to assembly are outlined and the various software packages available are introduced and compared. The question of whether quality assemblies can be produced using short-read NGS data alone, or whether it must be combined with more expensive sequencing techniques, is considered. Prospects for future assemblers and tests of assembly performance are also discussed.


July 7, 2019

Complete mitogenome of Indian mottled eel, Anguilla bengalensis bengalensis (Gray, 1831) through PacBio RSII sequencing.

Complete mitogenome sequence for Anguilla bengalensis bengalensis (family Anguillidae) was generated through third-generation sequencing platform. The 16?714 bp mitgenome sequence contained 13 protein-coding genes, 22 transfer RNAs, 2 ribosomal RNAs, and a non-coding (control) region. The gene order was identical to that observed in most of the other vertebrates. The comparison of complete mitogenome sequence of Indian mottled eel generated during this study with two other subspecies did not agree with the taxonomic status of the three subspecies and considered as one species.


July 7, 2019

Current status of genome sequencing and its applications in aquaculture

Aquaculture is the fastest-growing food production sector in agriculture, with great potential to meet projected protein needs of human beings. Aquaculture is facing several challenges, including lack of a sufficient number of genetically improved species, lack of species-specific feeds, high mortality due to diseases and pollution of ecosystems. The rapid development of sequencing technologies has revolutionized biological sciences, and supplied necessary tools to tackle these challenges in aquaculture and thus ensure its sustainability and profitability. So far, draft genomes have been published in over 24 aquaculture species, and used to address important issues related to aquaculture. We briefly review the advances of next generation sequencing technologies, and summarize the status of whole genome sequencing and its general applications (i.e. establishing reference genomes and discovering DNA markers) and specific applications in tackling some important issues (e.g. breeding, diseases, sex determination & maturation) related to aquaculture. For sequencing a new genome, we recommend the use of 100–200 × short reads using Illumina and 50–60 × long reads with PacBio sequencing technologies. For identification of a large number of SNPs, resequencing pooled DNA samples from different populations is the most cost-effective way. We also discuss the challenges and future directions of whole genome sequencing in aquaculture.


July 7, 2019

NOVOPlasty: de novo assembly of organelle genomes from whole genome data.

The evolution in next-generation sequencing (NGS) technology has led to the development of many different assembly algorithms, but few of them focus on assembling the organelle genomes. These genomes are used in phylogenetic studies, food identification and are the most deposited eukaryotic genomes in GenBank. Producing organelle genome assembly from whole genome sequencing (WGS) data would be the most accurate and least laborious approach, but a tool specifically designed for this task is lacking. We developed a seed-and-extend algorithm that assembles organelle genomes from whole genome sequencing (WGS) data, starting from a related or distant single seed sequence. The algorithm has been tested on several new (Gonioctena intermedia and Avicennia marina) and public (Arabidopsis thaliana and Oryza sativa) whole genome Illumina data sets where it outperforms known assemblers in assembly accuracy and coverage. In our benchmark, NOVOPlasty assembled all tested circular genomes in less than 30 min with a maximum memory requirement of 16 GB and an accuracy over 99.99%. In conclusion, NOVOPlasty is the sole de novo assembler that provides a fast and straightforward extraction of the extranuclear genomes from WGS data in one circular high quality contig. The software is open source and can be downloaded at https://github.com/ndierckx/NOVOPlasty.


July 7, 2019

LoRTE: Detecting transposon-induced genomic variants using low coverage PacBio long read sequences.

Population genomic analysis of transposable elements has greatly benefited from recent advances of sequencing technologies. However, the short size of the reads and the propensity of transposable elements to nest in highly repeated regions of genomes limits the efficiency of bioinformatic tools when Illumina or 454 technologies are used. Fortunately, long read sequencing technologies generating read length that may span the entire length of full transposons are now available. However, existing TE population genomic softwares were not designed to handle long reads and the development of new dedicated tools is needed.LoRTE is the first tool able to use PacBio long read sequences to identify transposon deletions and insertions between a reference genome and genomes of different strains or populations. Tested against simulated and genuine Drosophila melanogaster PacBio datasets, LoRTE appears to be a reliable and broadly applicable tool to study the dynamic and evolutionary impact of transposable elements using low coverage, long read sequences.LoRTE is an efficient and accurate tool to identify structural genomic variants caused by TE insertion or deletion. LoRTE is available for download at http://www.egce.cnrs-gif.fr/?p=6422.


July 7, 2019

Modified low-salt CTAB extraction of high-quality DNA from contaminant-rich tissues.

The increasing use of high-throughput sequencing platforms has made the isolation of pure, high molecular weight DNA a primary concern for studies of a diverse range of organisms. Purification of DNA remains a significant challenge in many tissue and sample types due to various organic and inorganic molecules that coprecipitate with nucleic acids. Molluscs, for example, contain high concentrations of polysaccharides which often coprecipitate with DNA and can inhibit downstream enzymatic reactions. We modified a low-salt CTAB (MoLSC) extraction protocol to accommodate contaminant-rich animal tissues and compared this method to a standard CTAB extraction protocol and two commercially available animal tissue DNA extraction kits using oyster adductor muscle. Comparisons of purity and molecular integrity showed that our in-house protocol yielded genomic DNA generally free of contaminants and shearing, whereas the traditional CTAB method and some of the commercial kits yielded DNA unsuitable for some applications of massively parallel sequencing. Our open-source MoLSC protocol provides a cost-effective, scalable, alternative DNA extraction method that can be easily optimized and adapted for sequencing applications in other contaminant-rich samples. © 2016 Her Majesty the Queen in Right of Canada. Molecular Ecology Resources © 2016 John Wiley & Sons Ltd.


July 7, 2019

The comparative landscape of duplications in Heliconius melpomene and Heliconius cydno.

Gene duplications can facilitate adaptation and may lead to interpopulation divergence, causing reproductive isolation. We used whole-genome resequencing data from 34 butterflies to detect duplications in two Heliconius species, Heliconius cydno and Heliconius melpomene. Taking advantage of three distinctive signals of duplication in short-read sequencing data, we identified 744 duplicated loci in H. cydno and H. melpomene and evaluated the accuracy of our approach using single-molecule sequencing. We have found that duplications overlap genes significantly less than expected at random in H. melpomene, consistent with the action of background selection against duplicates in functional regions of the genome. Duplicate loci that are highly differentiated between H. melpomene and H. cydno map to four different chromosomes. Four duplications were identified with a strong signal of divergent selection, including an odorant binding protein and another in close proximity with a known wing colour pattern locus that differs between the two species. Heredity advance online publication, 7 December 2016; doi:10.1038/hdy.2016.107.


July 7, 2019

Identification of mutant genes and introgressed tiger salamander DNA in the laboratory axolotl, Ambystoma mexicanum.

The molecular genetic toolkit of the Mexican axolotl, a classic model organism, has matured to the point where it is now possible to identify genes for mutant phenotypes. We used a positional cloning-candidate gene approach to identify molecular bases for two historic axolotl pigment phenotypes: white and albino. White (d/d) mutants have defects in pigment cell morphogenesis and differentiation, whereas albino (a/a) mutants lack melanin. We identified in white mutants a transcriptional defect in endothelin 3 (edn3), encoding a peptide factor that promotes pigment cell migration and differentiation in other vertebrates. Transgenic restoration of Edn3 expression rescued the homozygous white mutant phenotype. We mapped the albino locus to tyrosinase (tyr) and identified polymorphisms shared between the albino allele (tyr (a) ) and tyr alleles in a Minnesota population of tiger salamanders from which the albino trait was introgressed. tyr (a) has a 142?bp deletion and similar engineered alleles recapitulated the albino phenotype. Finally, we show that historical introgression of tyr (a) significantly altered genomic composition of the laboratory axolotl, yielding a distinct, hybrid strain of ambystomatid salamander. Our results demonstrate the feasibility of identifying genes for traits in the laboratory Mexican axolotl.


July 7, 2019

Complex modular architecture around a simple toolkit of wing pattern genes

Identifying the genomic changes that control morphological variation and understanding how they generate diversity is a major goal of evolutionary biology. In Heliconius butterflies, a small number of genes control the development of diverse wing colour patterns. Here, we used full-genome sequencing of individuals across the Heliconius erato radiation and closely related species to characterize genomic variation associated with wing pattern diversity. We show that variation around colour pattern genes is highly modular, with narrow genomic intervals associated with specific differences in colour and pattern. This modular architecture explains the diversity of colour patterns and provides a flexible mechanism for rapid morphological diversification.


July 7, 2019

The value of new genome references.

Genomic information has become a ubiquitous and almost essential aspect of biological research. Over the last 10-15 years, the cost of generating sequence data from DNA or RNA samples has dramatically declined and our ability to interpret those data increased just as remarkably. Although it is still possible for biologists to conduct interesting and valuable research on species for which genomic data are not available, the impact of having access to a high quality whole genome reference assembly for a given species is nothing short of transformational. Research on a species for which we have no DNA or RNA sequence data is restricted in fundamental ways. In contrast, even access to an initial draft quality genome (see below for definitions) opens a wide range of opportunities that are simply not available without that reference genome assembly. Although a complete discussion of the impact of genome sequencing and assembly is beyond the scope of this short paper, the goal of this review is to summarize the most common and highest impact contributions that whole genome sequencing and assembly has had on comparative and evolutionary biology. Copyright © 2016. Published by Elsevier Inc.


July 7, 2019

The mitochondrial genome sequences of the round goby and the sand goby reveal patterns of recent evolution in gobiid fish.

Vertebrate mitochondrial genomes are optimized for fast replication and low cost of RNA expression. Accordingly, they are devoid of introns, are transcribed as polycistrons and contain very little intergenic sequences. Usually, vertebrate mitochondrial genomes measure between 16.5 and 17 kilobases (kb).During genome sequencing projects for two novel vertebrate models, the invasive round goby and the sand goby, we found that the sand goby genome is exceptionally small (16.4 kb), while the mitochondrial genome of the round goby is much larger than expected for a vertebrate. It is 19 kb in size and is thus one of the largest fish and even vertebrate mitochondrial genomes known to date. The expansion is attributable to a sequence insertion downstream of the putative transcriptional start site. This insertion carries traces of repeats from the control region, but is mostly novel. To get more information about this phenomenon, we gathered all available mitochondrial genomes of Gobiidae and of nine gobioid species, performed phylogenetic analyses, analysed gene arrangements, and compared gobiid mitochondrial genome sizes, ecological information and other species characteristics with respect to the mitochondrial phylogeny. This allowed us amongst others to identify a unique arrangement of tRNAs among Ponto-Caspian gobies.Our results indicate that the round goby mitochondrial genome may contain novel features. Since mitochondrial genome organisation is tightly linked to energy metabolism, these features may be linked to its invasion success. Also, the unique tRNA arrangement among Ponto-Caspian gobies may be helpful in studying the evolution of this highly adaptive and invasive species group. Finally, we find that the phylogeny of gobiids can be further refined by the use of longer stretches of linked DNA sequence.


July 7, 2019

Genome scaffolding and annotation for the pathogen vector Ixodes ricinus by ultra-long single molecule sequencing.

Global warming and other ecological changes have facilitated the expansion of Ixodes ricinus tick populations. Ixodes ricinus is the most important carrier of vector-borne pathogens in Europe, transmitting viruses, protozoa and bacteria, in particular Borrelia burgdorferi (sensu lato), the causative agent of Lyme borreliosis, the most prevalent vector-borne disease in humans in the Northern hemisphere. To faster control this disease vector, a better understanding of the I. ricinus tick is necessary. To facilitate such studies, we recently published the first reference genome of this highly prevalent pathogen vector. Here, we further extend these studies by scaffolding and annotating the first reference genome by using ultra-long sequencing reads from third generation single molecule sequencing. In addition, we present the first genome size estimation for I. ricinus ticks and the embryo-derived cell line IRE/CTVM19.235,953 contigs were integrated into 204,904 scaffolds, extending the currently known genome lengths by more than 30% from 393 to 516 Mb and the N50 contig value by 87% from 1643 bp to a N50 scaffold value of 3067 bp. In addition, 25,263 sequences were annotated by comparison to the tick’s North American relative Ixodes scapularis. After (conserved) hypothetical proteins, zinc finger proteins, secreted proteins and P450 coding proteins were the most prevalent protein categories annotated. Interestingly, more than 50% of the amino acid sequences matching the homology threshold had 95-100% identity to the corresponding I. scapularis gene models. The sequence information was complemented by the first genome size estimation for this species. Flow cytometry-based genome size analysis revealed a haploid genome size of 2.65Gb for I. ricinus ticks and 3.80 Gb for the cell line.We present a first draft sequence map of the I. ricinus genome based on a PacBio-Illumina assembly. The I. ricinus genome was shown to be 26% (500 Mb) larger than the genome of its American relative I. scapularis. Based on the genome size of 2.65 Gb we estimated that we covered about 67% of the non-repetitive sequences. Genome annotation will facilitate screening for specific molecular pathways in I. ricinus cells and provides an overview of characteristics and functions.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.