Menu
September 22, 2019

Genomic Tandem Quadruplication is Associated with Ketoconazole Resistance in Malassezia pachydermatis.

Malassezia pachydermatis is a commensal yeast found on the skin of dogs. However, M. pachydermatis is also considered an opportunistic pathogen and is associated with various canine skin diseases including otitis externa and atopic dermatitis, which usually require treatment using an azole antifungal drug, such as ketoconazole. In this study, we isolated a ketoconazole-resistant strain of M. pachydermatis, designated “KCTC 27587,” from the external ear canal of a dog with otitis externa and analyzed its resistance mechanism. To understand the mechanism underlying ketoconazole resistance of the clinical isolate M. pachydermatis KCTC 27587, the whole genome of the yeast was sequenced using the PacBio platform and was compared with M. pachydermatis type strain CBS 1879. We found that a ~84-kb region in chromosome 4 of M. pachydermatis KCTC 27587 was tandemly quadruplicated. The quadruplicated region contains 52 protein coding genes, including the homologs of ERG4 and ERG11, whose overexpression is known to be associated with azole resistance. Our data suggest that the quadruplication of the ~84-kb region may be the cause of the ketoconazole resistance in M. pachydermatis KCTC 27587.


September 22, 2019

Complete Genome Sequence of Massilia oculi sp. nov. CCUG 43427T (=DSM 26321T), the Type Strain of M. oculi, and Comparison with Genome Sequences of Other Massilia Strains.

Massilia oculi sp. nov. of type strain CCUG 43427T is a Gram-negative, rod-shaped, nonspore-forming bacterium, which was recently isolated from the eye of a patient suffering from endophthalmitis and was described as novel species in Massilia genus. In this study, we present the complete genome sequence of this strain by using Pacbio SMRT cell platform and compare this sequence with the genomes of 30 Massilia representative strains. Also, a comprehensive search was conducted for genes and proteins involved in antibiotic resistance and pathogenicity. The genome of CCUG 43427T is 5,844,653 bp with 65.55% GC content. This genome contains four prophages and four genomic islands (GIs). The cobalt/zinc/cadmium transporter locus CzcABCD is included in these GIs. This GI was predicted to play important role in bacterial heavy-metal tolerance. The in silico genome analysis also revealed that this strain contains a lot of antibiotic resistance and pathogenicity related genes. This result suggested that this strain may has evolved a wide arsenal of weapons for pathogenicity and survival. Genome comparison among CCUG 43427T and other 30 Massilia strains revealed that more than 400 genes are unique in CCUG 43427T. Among these, one gene cluster, which was annotated to be important for LOS biosynthesis, catalytic mechanism and the substrate specificity of the enzyme, was predicted to be horizontally transferred by using phylogenies and biased GC content.


September 22, 2019

Molecular characteristics and comparative genomics analysis of a clinical Enterococcus casseliflavus with a resistance plasmid.

The aim of this work was to investigate the molecular characterization of a clinical Enterococcus casseliflavus strain with a resistance plasmid.En. casseliflavus EC369 was isolated from a patient in a hospital in southern China. The minimum inhibitory concentration was found by means of the agar dilution method to determine the antimicrobial susceptibilities of the strains. Whole-genome sequencing and comparative genomics analysis were performed to analyze the mechanism of antibiotic resistance and the horizontal gene transfer of the resistance gene-related mobile genetic elements.En. casseliflavus EC369 showed resistance to erythromycin, kanamycin, and streptomycin, but was susceptible to vancomycin, ampicillin, and streptothricin and other antimicrobials. There were six resistance genes (aph3′, ant6, bla, sat4, and two ermBs) carried by a transposon identified on the plasmid pEC369 and a complete resistance gene cluster of vancomycin and a tet (M) gene encoded on the chromosome. This is the first complete plasmid sequence reported in clinically isolated En. casseliflavus. The plasmid with the greatest sequence identity with pEC369 was the plasmid of Enterococcus sp. FDAARGOS_375, followed by the plasmids of Enterococcus faecium strains F12085 and pRE25, whereas the sequence with the greatest identity to the resistance genes carrying a transposon of pEC369 was on the chromosome of Staphylococcus aureus strain GD1677.The resistance profiles of En. casseliflavus EC369 might contribute to the resistance genes encoded on the plasmid. The fact that the most similar sequence to the transposon carrying resistance genes of pEC369 was encoded in the chromosome of a S. aureus strain provides insights into the mechanism of dissemination of multidrug resistance between bacteria of different species or genera through horizontal gene transfer.


September 22, 2019

Construction of stable fluorescent laboratory control strains for several food safety relevant Enterobacteriaceae.

Using naturally-occurring bacterial strains as positive controls in testing protocols is typically feared due to the risk of cross-contaminating samples. We have developed a collection of strains which express Green Fluorescent Protein (GFP) at high-level, permitting rapid screening of the following species on selective or non-selective plates: Escherichia coli O157:H7, Shigella sonnei, S. flexneri, Salmonella enterica subsp. Enterica serovar Gaminera, S. Mbandaka, S. Tennesse, S. Minnesota, S. Senftenberg and S. Typhimurium. These new strains fluoresce when irradiated with UV light and maintain this phenotype in absence of antibiotic selection. Recombinants were phenotypically equivalent to the parent strain, except for S. Tennessee Sal66 that appeared Lac- on Xylose Lysine Deoxycholate (XLD) agar plates and Lac+ on Mac Conkey and Hektoen Enteric agar plates. Analysis of closed whole genome sequences revealed that Sal66 had lost one lactose operon; slower rates of lactose metabolism may affect lactose fermentation on XLD agar. These fluorescent enteric control strains were challenging to develop and should provide an easy and effective means of identifying cross-contamination. Published by Elsevier Ltd.


September 22, 2019

Genomic and metatranscriptomic analyses of Weissella koreensis reveal its metabolic and fermentative features during kimchi fermentation

The genomic and metabolic features of Weissella koreensis, one of the major lactic acid bacteria in kimchi, were investigated through genomic, metabolic, and transcriptomic analyses for the genomes of strains KCTC 3621T, KACC 15510, and WiKim0080. W. koreensis strains were intrinsically vancomycin-resistant and harbored potential hemolysin genes that were actively transcribed although no hemolysin activity was detected. KEGG and reconstructed fermentative metabolic pathways displayed that W. koreensis strains commonly employ the heterolactic pathway to produce d-lactate, ethanol, acetate, CO2, d-sorbitol, thiamine, and folate from various carbohydrates including d-glucose, d-mannose, d-lactose, l-malate, d-xylose, l-arabinose, d-ribose, N-acetyl-glucosamine, and gluconate, and strains KCTC 3621T and WiKim0080 additionally have metabolic pathways of d-galacturonate and d-glucoronate. Phenotypic analyses showed that all strains did not ferment d-galactose, probably due to the lack of d-galactose transporting system, and strains KCTC 3621T and WiKim0080 fermented d-fructose, indicating the presence of d-fructose transporting system. Fermentative features of W. koreensis were investigated through kimchi transcriptional analysis, suggesting that W. koreensis is mainly responsible for kimchi fermentation with the production of various fermentative metabolites during late fermentation period. This was the first study to investigate the genomic and metabolic features of W. koreensis, which may provide better understandings on kimchi fermentation.


September 22, 2019

Emergence of pathogenic and multiple-antibiotic-resistant Macrococcus caseolyticus in commercial broiler chickens.

Macrococcus caseolyticus is generally considered to be a non-pathogenic bacterium that does not cause human or animal diseases. However, recently, a strain of M. caseolyticus (SDLY strain) that causes high mortality rates was isolated from commercial broiler chickens in China. The main pathological changes caused by SDLY included caseous exudation in cranial cavities, inflammatory infiltration, haemorrhages and multifocal necrosis in various organs. The whole genome of the SDLY strain was sequenced and was compared with that of the non-pathogenic JCSC5402 strain of M. caseolyticus. The results showed that the SDLY strain harboured a large quantity of mutations, antibiotic resistance genes and numerous insertions and deletions of virulence genes. In particular, among the inserted genes, there is a cluster of eight connected genes associated with the synthesis of capsular polysaccharide. This cluster encodes a transferase and capsular polysaccharide synthase, promotes the formation of capsules and causes changes in pathogenicity. Electron microscopy revealed a distinct capsule surrounding the SDLY strain. The pathogenicity test showed that the SDLY strain could cause significant clinical symptoms and pathological changes in both SPF chickens and mice. In addition, these clinical symptoms and pathological changes were the same as those observed in field cases. Furthermore, the anti-microbial susceptibility test demonstrated that the SDLY strain exhibits multiple-antibiotic resistance. The emergence of pathogenic M. caseolyticus indicates that more attention should be paid to the effects of this micro-organism on both poultry and public health.© 2018 Blackwell Verlag GmbH.


September 22, 2019

Comparative genomic analysis revealed rapid differentiation in the pathogenicity-related gene repertoires between Pyricularia oryzae and Pyricularia penniseti isolated from a Pennisetum grass.

A number of Pyricularia species are known to infect different grass species. In the case of Pyricularia oryzae (syn. Magnaporthe oryzae), distinct populations are known to be adapted to a wide variety of grass hosts, including rice, wheat and many other grasses. The genome sizes of Pyricularia species are typical for filamentous ascomycete fungi [~?40 Mbp for P. oryzae, and ~?45 Mbp for P. grisea]. Genome plasticity, mediated in part by deletions promoted by recombination between repetitive elements [Genome Res 26:1091-1100, 2016, Nat Rev Microbiol 10:417-430,2012] and transposable elements [Annu Rev Phytopathol 55:483-503,2017] contributes to host adaptation. Therefore, comparisons of genome structure of individual species will provide insight into the evolution of host specificity. However, except for the P. oryzae subgroup, little is known about the gene content or genome organization of other Pyricularia species, such as those infecting Pennisetum grasses.Here, we report the genome sequence of P. penniseti strain P1609 isolated from a Pennisetum grass (JUJUNCAO) using PacBio SMRT sequencing technology. Phylogenomic analysis of 28 Magnaporthales species and 5 non-Magnaporthales species indicated that P1609 belongs to a Pyricularia subclade, which is genetically distant from P. oryzae. Comparative genomic analysis revealed that the pathogenicity-related gene repertoires had diverged between P1609 and the P. oryzae strain 70-15, including the known avirulence genes, other putative secreted proteins, as well as some other predicted Pathogen-Host Interaction (PHI) genes. Genomic sequence comparison also identified many genomic rearrangements relative to P. oryzae.Our results suggested that the genomic sequence of the P. penniseti P1609 could be a useful resource for the genetic study of the Pennisetum-infecting Pyricularia species and provide new insight into evolution of pathogen genomes during host adaptation.


September 22, 2019

Enterobacter cloacae Complex Sequence Type 171 Isolates Expressing KPC-4 Carbapenemase Recovered from Canine Patients in Ohio.

Companion animals are likely relevant in the transmission of antimicrobial-resistant bacteria. Enterobacter xiangfangensis sequence type 171 (ST171), a clone that has been implicated in clusters of infections in humans, was isolated from two dogs with clinical disease in Ohio. The canine isolates contained IncHI2 plasmids encoding blaKPC-4 Whole-genome sequencing was used to put the canine isolates in phylogenetic context with available human ST171 sequences, as well as to characterize their blaKPC-4 plasmids. Copyright © 2018 American Society for Microbiology.


September 22, 2019

DNA Methylation by Restriction Modification Systems Affects the Global Transcriptome Profile in Borrelia burgdorferi.

Prokaryote restriction modification (RM) systems serve to protect bacteria from potentially detrimental foreign DNA. Recent evidence suggests that DNA methylation by the methyltransferase (MTase) components of RM systems can also have effects on transcriptome profiles. The type strain of the causative agent of Lyme disease, Borrelia burgdorferi B31, possesses two RM systems with N6-methyladenosine (m6A) MTase activity, which are encoded by the bbe02 gene located on linear plasmid lp25 and bbq67 on lp56. The specific recognition and/or methylation sequences had not been identified for either of these B. burgdorferi MTases, and it was not previously known whether these RM systems influence transcript levels. In the current study, single-molecule real-time sequencing was utilized to map genome-wide m6A sites and to identify consensus modified motifs in wild-type B. burgdorferi as well as MTase mutants lacking either the bbe02 gene alone or both bbe02 and bbq67 genes. Four novel conserved m6A motifs were identified and were fully attributable to the presence of specific MTases. Whole-genome transcriptome changes were observed in conjunction with the loss of MTase enzymes, indicating that DNA methylation by the RM systems has effects on gene expression. Genes with altered transcription in MTase mutants include those involved in vertebrate host colonization (e.g., rpoS regulon) and acquisition by/transmission from the tick vector (e.g., rrp1 and pdeB). The results of this study provide a comprehensive view of the DNA methylation pattern in B. burgdorferi, and the accompanying gene expression profiles add to the emerging body of research on RM systems and gene regulation in bacteria.IMPORTANCE Lyme disease is the most prevalent vector-borne disease in North America and is classified by the Centers for Disease Control and Prevention (CDC) as an emerging infectious disease with an expanding geographical area of occurrence. Previous studies have shown that the causative bacterium, Borrelia burgdorferi, methylates its genome using restriction modification systems that enable the distinction from foreign DNA. Although much research has focused on the regulation of gene expression in B. burgdorferi, the effect of DNA methylation on gene regulation has not been evaluated. The current study characterizes the patterns of DNA methylation by restriction modification systems in B. burgdorferi and evaluates the resulting effects on gene regulation in this important pathogen. Copyright © 2018 American Society for Microbiology.


September 22, 2019

Meiotic drive of female-inherited supernumerary chromosomes in a pathogenic fungus.

Meiosis is a key cellular process of sexual reproduction that includes pairing of homologous sequences. In many species however, meiosis can also involve the segregation of supernumerary chromosomes, which can lack a homolog. How these unpaired chromosomes undergo meiosis is largely unknown. In this study we investigated chromosome segregation during meiosis in the haploid fungus Zymoseptoria tritici that possesses a large complement of supernumerary chromosomes. We used isogenic whole chromosome deletion strains to compare meiotic transmission of chromosomes when paired and unpaired. Unpaired chromosomes inherited from the male parent as well as paired supernumerary chromosomes in general showed Mendelian inheritance. In contrast, unpaired chromosomes inherited from the female parent showed non-Mendelian inheritance but were amplified and transmitted to all meiotic products. We concluded that the supernumerary chromosomes of Z. tritici show a meiotic drive and propose an additional feedback mechanism during meiosis, which initiates amplification of unpaired female-inherited chromosomes.© 2018, Habig et al.


September 22, 2019

Emergence of an extensively drug-resistant (XDR) Streptococcus pneumoniae serotype 15A by capsular switching.

Recently, we have identified an extensively drug-resistant (XDR) Streptococcus pneumoniae serotype 15A isolate from a patient with bacterial meningitis. It belonged to sequence type 8279 (ST8279), a clone identified as XDR serotype 11A isolated in South Korea. We obtained and compared the genome sequences of an XDR 15A and an XDR 11A isolate. The genomes of two XDR isolates were highly identical, except for the capsular polysaccharide (cps) locus and another small region. Capsular switching from 11A to 15A may have occurred via recombination of the cps locus. The emergence of a new XDR clone via capsular switching would be a great concern for public health and in clinical settings. Copyright © 2018 Elsevier GmbH. All rights reserved.


September 22, 2019

Cloning and characterization of short-chain N-acyl homoserine lactone-producing Enterobacter asburiae strain L1 from lettuce leaves.

In gram-negative bacteria, bacterial communication or quorum sensing (QS) is achieved using common signaling molecules known as N-acyl homoserine lactones (AHL). We have previously reported the genome of AHL-producing bacterium, Enterobacter asburiae strain L1. In silico analysis of the strain L1 genome revealed the presence of a pair of luxI/R genes responsible for AHL-type QS, designated as easIR. In this work, the 639 bp luxI homolog, encoding 212 amino acids, have been cloned and overexpressed in Escherichia coli BL21 (DE3)pLysS. The purified protein (~25 kDa) shares high similarity to several members of the LuxI family among different E asburiae strains. Our findings showed that the heterologously expressed EasI protein has activated violacein production by AHL biosensor Chromobacterium violaceum CV026 as the wild-type E. asburiae. The mass spectrometry analysis showed the production of N-butanoyl homoserine lactone and N-hexanoyl homoserine lactone from induced E. coli harboring the recombinant EasI, suggesting that EasI is a functional AHL synthase. E. asburiae strain L1 was also shown to possess biofilm-forming characteristic activity using crystal violet binding assay. This is the first report on cloning and characterization of the luxI homolog from E. asburiae.© 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.


September 22, 2019

Implications of stx loss for clinical diagnostics of Shiga toxin-producing Escherichia coli.

The dynamics related to the loss of stx genes from Shiga toxin-producing Escherichia coli remain unclear. Current diagnostic procedures have shortcomings in the detection and identification of STEC. This is partly owing to the fact that stx genes may be lost during an infection or in the laboratory. The aim of the present study was to provide new insight into in vivo and in vitro stx loss in order to improve diagnostic procedures. Results from the study support the theory that loss of stx is a strain-related phenomenon and not induced by patient factors. It was observed that one strain could lose stx both in vivo and in vitro. Whole genome comparison of stx-positive and stx-negative isolates from the same patient revealed that different genomic rearrangements, such as complete or partial loss of the parent prophage, may be factors in the loss of stx. Of diagnostic interest, it was shown that patients can be co-infected with different E. coli pathotypes. Therefore, identification of eae-positive, but stx-negative isolates should not be interpreted as “Shiga toxin-lost” E. coli without further testing. Growth and recovery of STEC were supported by different selective agar media for different strains, arguing for inclusion of several media in STEC diagnostics.


September 22, 2019

Improved nucleic acid extraction protocols for Ganoderma boninense, G. miniatocinctum and G. tornatum.

The first and most crucial step of all molecular techniques is to isolate high quality and intact nucleic acids. However, DNA and RNA isolation from fungal samples are usually difficult due to the cell walls that are relatively unsusceptible to lysis and often resistant to traditional extraction procedures. Although there are many extraction protocols for Ganoderma species, different extraction protocols have been applied to different species to obtain high yields of good quality nucleic acids, especially for genome and transcriptome sequencing. Ganoderma species, mainly G. boninense causes the basal stem rot disease, a devastating disease that plagues the oil palm industry. Here, we describe modified DNA extraction protocols for G. boninense, G. miniatocinctum and G. tornatum, and an RNA extraction protocol for G. boninense. The modified salting out DNA extraction protocol is suitable for G. boninense and G. miniatocinctum while the modified high salt and low pH protocol is suitable for G. tornatum. The modified DNA and RNA extraction protocols were able to produce high quality genomic DNA and total RNA of?~?140 to 160 µg/g and?~?80 µg/g of mycelia respectively, for Single Molecule Real Time (PacBio Sequel® System) and Illumina sequencing. These protocols will benefit those studying the oil palm pathogens at nucleotide level.


September 22, 2019

The changing landscape of vancomycin-resistant Enterococcus faecium in Australia: a population-level genomic study.

Vancomycin-resistant Enterococcus faecium (VREfm) represent a major source of nosocomial infection worldwide. In Australia, there has been a recent concerning increase in bacteraemia associated with the vanA genotype, prompting investigation into the genomic epidemiology of VREfm.A population-level study of VREfm (10 November-9 December 2015) was conducted. A total of 321 VREfm isolates (from 286 patients) across Victoria State were collected and sequenced with Illumina NextSeq. SNPs were used to assess relatedness. STs and genes associated with resistance and virulence were identified. The vanA-harbouring plasmid from an isolate from each ST was assembled using long-read data. Illumina reads from remaining isolates were then mapped to these assemblies to identify their probable vanA-harbouring plasmid.vanA-VREfm comprised 17.8% of isolates. ST203, ST80 and a pstS(-) clade, ST1421, predominated (30.5%, 30.5% and 37.2%, respectively). Most vanB-VREfm were ST796 (77.7%). vanA-VREfm were more closely related within hospitals versus between them [core SNPs 10 (IQR 1-357) versus 356 (179-416), respectively], suggesting discrete introductions of vanA-VREfm, with subsequent intra-hospital transmission. In contrast, vanB-VREfm had similar core SNP distributions within versus between hospitals, due to widespread dissemination of ST796. Different vanA-harbouring plasmids were found across STs. With the exception of ST78 and ST796, Tn1546 transposons also varied. Phylogenetic analysis revealed Australian strains were often interspersed with those from other countries, suggesting ongoing cross-continental transmission.Emerging vanA-VREfm in Australia is polyclonal, indicating repeat introductions of vanA-VREfm into hospitals and subsequent dissemination. The close relationship to global strains reinforces the need for ongoing screening and control of VREfm in Australia and abroad.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.