Menu
September 22, 2019

Mycobacterial biomaterials and resources for researchers.

There are many resources available to mycobacterial researchers, including culture collections around the world that distribute biomaterials to the general scientific community, genomic and clinical databases, and powerful bioinformatics tools. However, many of these resources may be unknown to the research community. This review article aims to summarize and publicize many of these resources, thus strengthening the quality and reproducibility of mycobacterial research by providing the scientific community access to authenticated and quality-controlled biomaterials and a wealth of information, analytical tools and research opportunities.


September 22, 2019

Comprehensive analysis of single molecule sequencing-derived complete genome and whole transcriptome of Hyposidra talaca nuclear polyhedrosis virus.

We sequenced the Hyposidra talaca NPV (HytaNPV) double stranded circular DNA genome using PacBio single molecule sequencing technology. We found that the HytaNPV genome is 139,089?bp long with a GC content of 39.6%. It encodes 141 open reading frames (ORFs) including the 37 baculovirus core genes, 25 genes conserved among lepidopteran baculoviruses, 72 genes known in baculovirus, and 7 genes unique to the HytaNPV genome. It is a group II alphabaculovirus that codes for the F protein and lacks the gp64 gene found in group I alphabaculovirus viruses. Using RNA-seq, we confirmed the expression of the ORFs identified in the HytaNPV genome. Phylogenetic analysis showed HytaNPV to be closest to BusuNPV, SujuNPV and EcobNPV that infect other tea pests, Buzura suppressaria, Sucra jujuba, and Ectropis oblique, respectively. We identified repeat elements and a conserved non-coding baculovirus element in the genome. Analysis of the putative promoter sequences identified motif consistent with the temporal expression of the genes observed in the RNA-seq data.


September 22, 2019

Unexpected invasion of miniature inverted-repeat transposable elements in viral genomes

Transposable elements (TEs) are common and often present with high copy numbers in cellular genomes. Unlike in cellular organisms, TEs were previously thought to be either rare or absent in viruses. Almost all reported TEs display only one or two copies per viral genome. In addition, the discovery of pandoraviruses with genomes up to 2.5-Mb emphasizes the need for biologists to rethink the fundamental nature of the relationship between viruses and cellular life.


September 22, 2019

Parallels between experimental and natural evolution of legume symbionts.

The emergence of symbiotic interactions has been studied using population genomics in nature and experimental evolution in the laboratory, but the parallels between these processes remain unknown. Here we compare the emergence of rhizobia after the horizontal transfer of a symbiotic plasmid in natural populations of Cupriavidus taiwanensis, over 10 MY ago, with the experimental evolution of symbiotic Ralstonia solanacearum for a few hundred generations. In spite of major differences in terms of time span, environment, genetic background, and phenotypic achievement, both processes resulted in rapid genetic diversification dominated by purifying selection. We observe no adaptation in the plasmid carrying the genes responsible for the ecological transition. Instead, adaptation was associated with positive selection in a set of genes that led to the co-option of the same quorum-sensing system in both processes. Our results provide evidence for similarities in experimental and natural evolutionary transitions and highlight the potential of comparisons between both processes to understand symbiogenesis.


September 22, 2019

First report of the occurrence and whole-genome characterization of Edwardsiella tarda in the false killer whale (Pseudorca crassidens).

Although several Edwardsiella tarda infections have been reported, its pathogenic role in marine mammals has not been investigated at the genome level. We investigated the genome of E. tarda strain KC-Pc-HB1, isolated from the false killer whale (Pseudorca crassidens) found bycaught in South Korea. The obtained genome was similar to that of human pathogenic E. tarda strains, but distinct from other Edwardsiella species. Although type III and VI secretion systems, which are essential for the virulence of other Edwardsiella species, were absent, several virulence-related genes involved in the pathogenesis of E. tarda were found in the genome. These results provide important insights into the E. tarda infecting marine mammals and give valuable information on potential virulence factors in this pathogen.


September 22, 2019

The impact of Staphylococcus aureus genomic variation on clinical phenotype of children with acute hematogenous osteomyelitis.

Children with acute hematogenous osteomyelitis (AHO) have a broad spectrum of illness ranging from mild to severe. The purpose of this study is to evaluate the impact of genomic variation of Staphylococcus aureus on clinical phenotype of affected children and determine which virulence genes correlate with severity of illness.De novo whole genome sequencing was conducted for a strain of Community Acquired Methicillin Resistant Staphylococcus aureus (CA-MRSA), using PacBio Hierarchical Genome Assembly Process (HGAP) from 6 Single Molecule Real Time (SMRT) Cells, as a reference for DNA library assembly of 71 Staphylococcus aureus isolates from children with AHO. Virulence gene annotation was based on exhaustive literature review and genomic data in NCBI for Staphylococcus aureus. Clinical phenotype was assessed using a validated severity score. Kruskal-Wallis rank sum test determined association between clinical severity and virulence gene presence using False Discovery Rate (FDR), significance <0.01.PacBio produced an assembled genome of 2,898,306 bp and 2054 Open Reading Frames (ORFs). Annotation confirmed 201 virulence genes. Statistical analysis of gene presence by clinical severity found 40 genes significantly associated with severity of illness (FDR =0.009). MRSA isolates encoded a significantly greater number of virulence genes than did MSSA (p < 0.0001). Phylogenetic analysis by maximum likelihood (PAML) demonstrated the relatedness of genomic distance to clinical phenotype.The Staphylococcus aureus genome contains virulence genes which are significantly associated with severity of illness in children with osteomyelitis. This study introduces a novel reference strain and detailed annotation of Staphylococcus aureus virulence genes. While this study does not address bacterial gene expression, a platform is created for future transcriptome investigations to elucidate the complex mechanisms involved in childhood osteomyelitis.


September 22, 2019

Landscape of the genome and host cell response of Mycobacterium shigaense reveals pathogenic features.

A systems approach was used to explore the genome and transcriptome of Mycobacterium shigaense, a new opportunistic pathogen isolated from a patient with a skin infection, and the host response transcriptome was assessed using a macrophage infection model. The M. shigaense genome comprises 5,207,883?bp, with 67.2% G+C content and 5098 predicted coding genes. Evolutionarily, the bacterium belongs to a cluster in the phylogenetic tree along with three target opportunistic pathogenic strains, namely, M. avium, M. triplex and M. simiae. Potential virulence genes are indeed expressed by M. shigaense under culture conditions. Phenotypically, M. shigaense had similar infection and replication capacities in a macrophage model as the opportunistic species compared to M. tuberculosis. M. shigaense activated NF-?B, TNF, cytokines and chemokines in the host innate immune-related signaling pathways and elicited an early response shared with pathogenic bacilli except M. tuberculosis. M. shigaense upregulated specific host response genes such as TLR7, CCL4 and CXCL5. We performed an integrated and comparative analysis of M. shigaense. Multigroup comparison indicated certain differences with typical pathogenic bacilli in terms of gene features and the macrophage response.


September 22, 2019

Comparative genomics of Campylobacter concisus: Analysis of clinical strains reveals genome diversity and pathogenic potential.

In recent years, an increasing number of Campylobacter species have been associated with human gastrointestinal (GI) diseases including gastroenteritis, inflammatory bowel disease, and colorectal cancer. Campylobacter concisus, an oral commensal historically linked to gingivitis and periodontitis, has been increasingly detected in the lower GI tract. In the present study, we generated robust genome sequence data from C. concisus strains and undertook a comprehensive pangenome assessment to identify C. concisus virulence properties and to explain potential adaptations acquired while residing in specific ecological niche(s) of the GI tract. Genomes of 53 new C. concisus strains were sequenced, assembled, and annotated including 36 strains from gastroenteritis patients, 13 strains from Crohn’s disease patients and four strains from colitis patients (three collagenous colitis and one lymphocytic colitis). When compared with previous published sequences, strains clustered into two main groups/genomospecies (GS) with phylogenetic clustering explained neither by disease phenotype nor sample location. Paired oral/faecal isolates, from the same patient, indicated that there are few genetic differences between oral and gut isolates which suggests that gut isolates most likely reflect oral strain relocation. Type IV and VI secretion systems genes, genes known to be important for pathogenicity in the Campylobacter genus, were present in the genomes assemblies, with 82% containing Type VI secretion system genes. Our findings indicate that C. concisus strains are genetically diverse, and the variability in bacterial secretion system content may play an important role in their virulence potential.


September 22, 2019

Genomic insights into nematicidal activity of a bacterial endophyte, Raoultella ornithinolytica MG against pine wilt nematode.

Pine wilt disease, caused by the nematode Bursaphelenchus xylophilus, is one of the most devastating conifer diseases decimating several species of pine trees on a global scale. Here, we report the draft genome of Raoultella ornithinolytica MG, which is isolated from mountain-cultivated ginseng plant as an bacterial endophyte and shows nematicidal activity against B. xylophilus. Our analysis of R. ornithinolytica MG genome showed that it possesses many genes encoding potential nematicidal factors in addition to some secondary metabolite biosynthetic gene clusters that may contribute to the observed nematicidal activity of the strain. Furthermore, the genome was lacking key components of avermectin gene cluster, suggesting that nematicidal activity of the bacterium is not likely due to the famous anthelmintic agent of wide-spread use, avermectin. This genomic information of R. ornithinolytica will provide basis for identification and engineering of genes and their products toward control of pine wilt disease.


September 22, 2019

Otitis in a cat associated with Corynebacterium provencense.

The role of corynebacteria in canine and feline otitis has not been investigated in detail; however, members of this genus are increasingly recognized as pathogens of otitis in both human and veterinary medicine.Here we report the first case of feline otitis associated with the recently described species Corynebacterium provencense. A seven-month old cat presented with a head tilt and ataxia was diagnosed with peripheral vestibular syndrome associated with an otitis media/interna. This took place 6 weeks after resection of a polyp, having initially shown a full recovery with topical ofloxacin and glucocorticoid treatment. Bacteriology of an ear swab yielded a pure culture of corynebacteria, which could not be identified at the species level using routine methods. However, the 16S rRNA gene sequence was 100% identical to the recently published novel corynebacterium species, Corynebacterium provencense. Whole genome sequencing of the cat isolate and calculation of average nucleotide identity (99.1%) confirmed this finding. The cat isolate was found to contain additional presumptive iron acquisition genes that are likely to encode virulence factors. Furthermore, the strain tested resistant to clindamycin, penicillin and ciprofloxacin. The cat was subsequently treated with chloramphenicol, which lead to clinical improvement.Corynebacteria from otitis cases are not routinely identified at the species level and not tested for antimicrobial susceptibility in veterinary laboratories, as they are not considered major pathogens. This may lead to underreporting of this genus or animals being treated with inappropriate antimicrobials since corynebacteria are often resistant to multiple drugs.


September 22, 2019

Characteristics of carbapenem-resistant Enterobacteriaceae in ready-to-eat vegetables in China.

Vegetables harboring bacteria resistant to antibiotics are a growing food safety issue. However, data concerning carbapenem-resistant Enterobacteriaceae (CRE) in ready-to-eat fresh vegetables is still rare. In this study, 411 vegetable samples from 36 supermarkets or farmer’s markets in 18 cities in China, were analyzed for CRE. Carbapenemase-encoding genes and other resistance genes were analyzed among the CRE isolates. Plasmids carrying carbapenemase genes were studied by conjugation, replicon typing, S1-PFGE southern blot, restriction fragment length polymorphism (RFLP), and sequencing. CRE isolates were also analyzed by pulsed-field gel electrophoresis (PFGE). Ten vegetable samples yielded one or more CRE isolates. The highest detection rate of CRE (14.3%, 4/28) was found in curly endive. Twelve CRE isolates were obtained and all showed multidrug resistance: Escherichia coli, 5; Citrobacter freundii, 5; and Klebsiella pneumoniae, 2. All E. coli and C. freundii carried blaNDM, while K. pneumoniae harbored blaKPC-2. Notably, E. coli with blaNDM and ST23 hypervirulent Klebsiella pneumoniae (hvKP) carrying blaKPC-2 were found in the same cucumber sample and clonal spread of E. coli, C. freundii, and K. pneumoniae isolates were all observed between vegetable types and/or cities. IncX3 plasmids carrying blaNDM from E. coli and C. freundii showed identical or highly similar RFLP patterns, and the sequenced IncX3 plasmid from cucumber was also identical or highly similar (99%) to the IncX3 plasmids from clinical patients reported in other countries, while blaKPC-2 in K. pneumoniae was mediated by similar F35:A-:B1 plasmids. Our results suggest that both clonal expansion and horizontal transmission of IncX3- or F35:A-:B1-type plasmids may mediate the spread of CRE in ready-to-eat vegetables in China. The presence of CRE in ready-to-eat vegetables is alarming and constitutes a food safety issue. To our knowledge, this is the first report of either the C. freundii carrying blaNDM, or K. pneumoniae harboring blaKPC-2 in vegetables. This is also the first report of ST23 carbapenem-resistant hvKP strain in vegetables.


September 22, 2019

The complete genome sequence of Vibrio aestuarianus W-40 reveals virulence factor genes.

Vibrio aestuarianus is an opportunistic environmental pathogen that has been associated with epidemics in cultured shrimp Penaeus vannamei. Hepatopancreas microsporidian (HPM) and monodon slow growth syndrome (MSGS) have been reported in cultured P. vannamei. In this study, we sequenced and assembled the whole genome of V. aestuarianus strain W-40, a strain that was originally isolated from the intestines of an infected P. vannamei. The genome of V. aestuarianus strain W-40 contains two circular chromosomes of 483,7307 bp with a 46.23% GC content. We identified 4,457 open reading frames (ORFs) that occupy 86.35% of the genome. Vibrio aestuarianus strain W-40 consists primarily of the ATP-binding cassette (ABC) transporter system and the phosphotransferase system (PTS). CagA is a metabolism system that includes bacterial extracellular solute-binding protein. Glutathione reductase can purge superoxide radicals (O22-) and hydrogen peroxide (H2 O2 ) damage in V. aestuarianus strain W-40. The presence of two compete type I restriction-modification systems was confirmed. A total of 42 insertion sequences (IS) elements and 16 IS elements were identified. Our results revealed a host of virulence factors that likely contribute to the pathogenicity of V. aestuarianus strain W-40, including the virulence factor genes vacA, clpC, and bvgA, which are important for biofilm dispersion. Several bacitracin and tetracycline antibiotic resistance-encoding genes and type VI secretion systems were also identified in the genome. The complete genome sequence will aid future studies of the pathogenesis of V. aestuarianus strain W-40 and allow for new strategies to control disease to be developed.© 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.


September 22, 2019

Adaptation of Pseudomonas aeruginosa to phage PaP1 predation via O-antigen polymerase mutation.

Adaptation of bacteria to phage predation poses a major obstacle for phage therapy. Bacteria adopt multiple mechanisms, such as inhibition of phage adsorption and CRISPR/Cas systems, to resist phage infection. Here, a phage-resistant mutant of Pseudomonas aeruginosa strain PA1 under the infection of lytic phage PaP1 was selected for further study. The PaP1-resistant variant, termed PA1RG, showed decreased adsorption to PaP1 and was devoid of long chain O-antigen on its cell envelope. Whole genome sequencing and comparative analysis revealed a single nucleotide mutation in the gene PA1S_08510, which encodes the O-antigen polymerase Wzy that is involved in lipopolysaccharide (LPS) biosynthesis. PA1_Wzy was classified into the O6 serotype based on sequence homology analysis and adopts a transmembrane topology similar to that seem with P. aeruginosa strain PAO1. Complementation of gene wzy in trans enabled the mutant PA1RG to produce the normal LPS pattern with long chain O-antigen and restored the susceptibility of PA1RG to phage PaP1 infection. While wzy mutation did not affect bacterial growth, mutant PA1RG exhibited decreased biofilm production, suggesting a fitness cost of PA1 associated with resistance of phage PaP1 predation. This study uncovered the mechanism responsible for PA1RG resistance to phage PaP1 via wzy mutation and revealed the role of phages in regulating bacterial behavior.


September 22, 2019

C-di-GMP turnover influences motility and biofilm formation in Bacillus amyloliquefaciens PG12.

Bis-(3′?5′) cyclic dimeric guanosine monophosphate (c-di-GMP) is defined as a highly versatile secondary messenger in bacteria, coordinating diverse aspects of bacterial growth and behavior, including motility and biofilm formation. Bacillus amyloliquefaciens PG12 is an effective biocontrol agent against apple ring rot caused by Botryosphaeria dothidea. In this study, we characterized the core regulators of c-di-GMP turnover in B. amyloliquefaciens PG12. Using bioinformatic analysis, heterologous expression and biochemical characterization of knockout and overexpression derivatives, we identified and characterized two active diguanylate cyclases (which catalyze c-di-GMP biosynthesis), YhcK and YtrP and one active c-di-GMP phosphodiesterase (which degrades c-di-GMP), YuxH. Furthermore, we showed that elevating c-di-GMP levels up to a certain threshold inhibited the swimming motility of B. amyloliquefaciens PG12. Although yhcK, ytrP and yuxH knockout mutants did not display defects in biofilm formation, significant increases in c-di-GMP levels induced by YtrP or YuxH overexpression stimulated biofilm formation in B. amyloliquefaciens PG12. Our results indicate that B. amyloliquefaciens possesses a functional c-di-GMP signaling system that influences the bacterium’s motility and ability to form biofilms. Since motility and biofilm formation influence the efficacy of biological control agent, our work provides a basis for engineering a more effective strain of B. amyloliquefaciens PG12. Copyright © 2018 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.


September 22, 2019

Comparative genomics provides insights into the marine adaptation in sponge-derived Kocuriaflava S43.

Sponge-derived actinomycetes represent a significant component of marine actinomycetes. Members of the genus Kocuria are distributed in various habitats such as soil, rhizosphere, clinical specimens, marine sediments, and sponges, however, to date, little is known about the mechanism of their environmental adaptation. Kocuria flava S43 was isolated from a coastal sponge. Phylogenetic analysis revealed that it was closely related to the terrestrial airborne K. flava HO-9041. In this study, to gain insights into the marine adaptation in K. flava S43 we sequenced the draft genome for K. flava S43 by third generation sequencing (TGS) and compared it with those of K. flava HO-9041 and some other Kocuria relatives. Comparative genomics and phylogenetic analyses revealed that K. flava S43 might adapt to the marine environment mainly by increasing the number of the genes linked to potassium homeostasis, resistance to heavy metals and phosphate metabolism, and acquiring the genes associated with electron transport and the genes encoding ATP-binding cassette (ABC) transporter, aquaporin, and thiol/disulfide interchange protein. Notably, gene acquisition was probably a primary mechanism of environmental adaptation in K. flava S43. Furthermore, this study also indicated that the Kocuria isolates from various marine and hyperosmotic environments possessed common genetic basis for environmental adaptation.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.