Menu
October 23, 2019  |  

Controlled delivery of ß-globin-targeting TALENs and CRISPR/Cas9 into mammalian cells for genome editing using microinjection.

Tal-effector nucleases (TALEN) and clustered regularly interspaced short palindromic repeats (CRISPR) with CRISPR-associated (Cas) proteins are genome editing tools with unprecedented potential. However, the ability to deliver optimal amounts of these nucleases into mammalian cells with minimal toxicity poses a major challenge. Common delivery approaches are transfection- and viral-based methods; each associated with significant drawbacks. An alternative method for directly delivering genome-editing reagents into single living cells with high efficiency and controlled volume is microinjection. Here, we characterize a glass microcapillary-based injection system and demonstrate controlled co-injection of TALENs or CRISPR/Cas9 together with donor template into single K562 cells for targeting the human ß-globin gene. We quantified nuclease induced insertions and deletions (indels) and found that, with ß-globin-targeting TALENs, similar levels of on- and off-target activity in cells could be achieved by microinjection compared with nucleofection. Furthermore, we observed 11% and 2% homology directed repair in single K562 cells co-injected with a donor template along with CRISPR/Cas9 and TALENs respectively. These results demonstrate that a high level of targeted gene modification can be achieved in human cells using glass-needle microinjection of genome editing reagents.


October 23, 2019  |  

Short DNA hairpins compromise recombinant adeno-associated virus genome homogeneity.

Short hairpin (sh)RNAs delivered by recombinant adeno-associated viruses (rAAVs) are valuable tools to study gene function in vivo and a promising gene therapy platform. Our data show that incorporation of shRNA transgenes into rAAV constructs reduces vector yield and produces a population of truncated and defective genomes. We demonstrate that sequences with hairpins or hairpin-like structures drive the generation of truncated AAV genomes through a polymerase redirection mechanism during viral genome replication. Our findings reveal the importance of genomic secondary structure when optimizing viral vector designs. We also discovered that shDNAs could be adapted to act as surrogate mutant inverted terminal repeats (mTRs), sequences that were previously thought to be required for functional self-complementary AAV vectors. The use of shDNAs as artificial mTRs opens the door to engineering a new generation of AAV vectors with improved potency, genetic stability, and safety for both preclinical studies and human gene therapy. Published by Elsevier Inc.


October 23, 2019  |  

Alternative splicing profile and sex-preferential gene expression in the female and male Pacific abalone Haliotis discus hannai.

In order to characterize the female or male transcriptome of the Pacific abalone and further increase genomic resources, we sequenced the mRNA of full-length complementary DNA (cDNA) libraries derived from pooled tissues of female and male Haliotis discus hannai by employing the Iso-Seq protocol of the PacBio RSII platform. We successfully assembled whole full-length cDNA sequences and constructed a transcriptome database that included isoform information. After clustering, a total of 15,110 and 12,145 genes that coded for proteins were identified in female and male abalones, respectively. A total of 13,057 putative orthologs were retained from each transcriptome in abalones. Overall Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analyzed in each database showed a similar composition between sexes. In addition, a total of 519 and 391 isoforms were genome-widely identified with at least two isoforms from female and male transcriptome databases. We found that the number of isoforms and their alternatively spliced patterns are variable and sex-dependent. This information represents the first significant contribution to sex-preferential genomic resources of the Pacific abalone. The availability of whole female and male transcriptome database and their isoform information will be useful to improve our understanding of molecular responses and also for the analysis of population dynamics in the Pacific abalone.


September 22, 2019  |  

Transcriptome profiling in the spathe of Anthurium andraeanum ‘Albama’ and its anthocyanin-loss mutant ‘Xueyu’.

Anthurium andraeanum is a popular tropical ornamental plant. Its spathes are brilliantly coloured due to variable anthocyanin contents. To examine the mechanisms that control anthocyanin biosynthesis, we sequenced the spathe transcriptomes of ‘Albama’, a red-spathed cultivar of A. andraeanum, and ‘Xueyu’, its anthocyanin-loss mutant. Both long reads and short reads were sequenced. Long read sequencing produced 805,869 raw reads, resulting in 83,073 high-quality transcripts. Short read sequencing produced 347.79?M reads, and the subsequent assembly resulted in 111,674 unigenes. High-quality transcripts and unigenes were quantified using the short reads, and differential expression analysis was performed between ‘Albama’ and ‘Xueyu’. Obtaining high-quality, full-length transcripts enabled the detection of long transcript structures and transcript variants. These data provide a foundation to elucidate the mechanisms regulating the biosynthesis of anthocyanin in A. andraeanum.


September 22, 2019  |  

Membrane attack complex-associated molecules from redlip mullet (Liza haematocheila): Molecular characterization and transcriptional evidence of C6, C7, C8ß, and C9 in innate immunity.

The redlip mullet (Liza haematocheila) is one of the most economically important fish in Korea and other East Asian countries; it is susceptible to infections by pathogens such as Lactococcus garvieae, Argulus spp., Trichodina spp., and Vibrio spp. Learning about the mechanisms of the complement system of the innate immunity of redlip mullet is important for efforts towards eradicating pathogens. Here, we report a comprehensive study of the terminal complement complex (TCC) components that form the membrane attack complex (MAC) through in-silico characterization and comparative spatial and temporal expression profiling. Five conserved domains (TSP1, LDLa, MACPF, CCP, and FIMAC) were detected in the TCC components, but the CCP and FIMAC domains were absent in MuC8ß and MuC9. Expression analysis of four TCC genes from healthy redlip mullets showed the highest expression levels in the liver, whereas limited expression was observed in other tissues; immune-induced expression in the head kidney and spleen revealed significant responses against Lactococcus garvieae and poly I:C injection, suggesting their involvement in MAC formation in response to harmful pathogenic infections. Furthermore, the response to poly I:C may suggest the role of TCC components in the breakdown of the membrane of enveloped viruses. These findings may help to elucidate the mechanisms behind the complement system of the teleosts innate immunity. Copyright © 2018 Elsevier Ltd. All rights reserved.


September 22, 2019  |  

Leveraging multiple transcriptome assembly methods for improved gene structure annotation.

The performance of RNA sequencing (RNA-seq) aligners and assemblers varies greatly across different organisms and experiments, and often the optimal approach is not known beforehand.Here, we show that the accuracy of transcript reconstruction can be boosted by combining multiple methods, and we present a novel algorithm to integrate multiple RNA-seq assemblies into a coherent transcript annotation. Our algorithm can remove redundancies and select the best transcript models according to user-specified metrics, while solving common artifacts such as erroneous transcript chimerisms.We have implemented this method in an open-source Python3 and Cython program, Mikado, available on GitHub.


September 22, 2019  |  

An environmental bacterial taxon with a large and distinct metabolic repertoire.

Cultivated bacteria such as actinomycetes are a highly useful source of biomedically important natural products. However, such ‘talented’ producers represent only a minute fraction of the entire, mostly uncultivated, prokaryotic diversity. The uncultured majority is generally perceived as a large, untapped resource of new drug candidates, but so far it is unknown whether taxa containing talented bacteria indeed exist. Here we report the single-cell- and metagenomics-based discovery of such producers. Two phylotypes of the candidate genus ‘Entotheonella’ with genomes of greater than 9 megabases and multiple, distinct biosynthetic gene clusters co-inhabit the chemically and microbially rich marine sponge Theonella swinhoei. Almost all bioactive polyketides and peptides known from this animal were attributed to a single phylotype. ‘Entotheonella’ spp. are widely distributed in sponges and belong to an environmental taxon proposed here as candidate phylum ‘Tectomicrobia’. The pronounced bioactivities and chemical uniqueness of ‘Entotheonella’ compounds provide significant opportunities for ecological studies and drug discovery.


September 22, 2019  |  

Two phospholipid scramblase 1-related proteins (PLSCR1like-a & -b) from Liza haematocheila: Molecular and transcriptional features and expression analysis after immune stimulation.

Phospholipid scramblases (PLSCRs) are a family of transmembrane proteins known to be responsible for Ca2+-mediated bidirectional phospholipid translocation in the plasma membrane. Apart from the scrambling activity of PLSCRs, recent studies revealed their diverse other roles, including antiviral defense, tumorigenesis, protein-DNA interactions, apoptosis regulation, and cell activation. Nonetheless, the biological and transcriptional functions of PLSCRs in fish have not been discovered to date. Therefore, in this study, two new members related to the PLSCR1 family were identified in the red lip mullet (Liza haematocheila) as MuPLSCR1like-a and MuPLSCR1like-b, and their characteristics were studied at molecular and transcriptional levels. Sequence analysis revealed that MuPLSCR1like-a and MuPLSCR1like-b are composed of 245 and 228 amino acid residues (aa) with the predicted molecular weights of 27.82 and 25.74?kDa, respectively. A constructed phylogenetic tree showed that MuPLSCR1like-a and MuPLSCR1like-b are clustered together with other known PLSCR1 and -2 orthologues, thus pointing to the relatedness to both PLSCR1 and PLSCR2 families. Two-dimensional (2D) and 3D graphical representations illustrated the well-known 12-stranded ß-barrel structure of MuPLSCR1like-a and MuPLSCR1like-b with transmembrane orientation toward the phospholipid bilayer. In analysis of tissue-specific expression, the highest expression of MuPLSCR1like-a was observed in the intestine, whereas MuPLSCR1like-b was highly expressed in the brain, indicating isoform specificity. Of note, we found that the transcription of MuPLSCR1like-a and MuPLSCR1like-b was significantly upregulated when the fish were stimulated with poly(I:C), suggesting that such immune responses target viral infections. Overall, this study provides the first experimental insight into the characteristics and immune-system relevance of PLSCR1-related genes in red lip mullets. Copyright © 2018 Elsevier Ltd. All rights reserved.


September 22, 2019  |  

HIV-1 infection of primary CD4(+) T cells regulates the expression of specific HERV-K (HML-2) elements.

Endogenous retroviruses (ERVs) occupy extensive regions of the human genome. Although many of these retroviral elements have lost their ability to replicate, those whose insertion took place more recently, such as the HML-2 group of HERV-K elements, still retain intact open reading frames and the capacity to produce certain viral RNA and/or proteins. Transcription of these ERVs is, however, tightly regulated by dedicated epigenetic control mechanisms. Nonetheless, it has been reported that some pathologic states, such as viral infections and certain cancers, coincide with ERV expression suggesting transcriptional reawakening is possible. HML-2 elements are reportedly induced during HIV-1 infection, but the conserved nature of these elements has, until recently, rendered their expression profiling problematic.Here, we provide comprehensive HERV-K HML-2 expression profiles specific for productively HIV-1 infected primary human CD4(+) T cells. We combined enrichment of HIV-1 infected cells using a reporter virus expressing a surface reporter for gentle and efficient purification with long-read Single Molecule Real-Time sequencing. We show that three HML-2 proviruses, 6q25.1, 8q24.3, and 19q13.42 are up-regulated on average between 3- and 5-fold in HIV-1 infected CD4(+) T cells. One provirus, HML-2 12q24.33, in contrast, was repressed in the presence of active HIV replication.In conclusion, this report identifies the HERV-K HML-2 loci whose expression profiles differ upon HIV-1 infection in primary human CD4(+) T cells. These data will help pave the way for further studies on the influence of endogenous retroviruses on HIV-1 replication.Importance Endogenous retroviruses inhabit big portions of our genome. And although they are mainly inert some of the evolutionarily younger members maintain the ability to express both RNA as well as proteins. We have developed an approach using long-read SMRT sequencing that produces long reads, that provides us with ability to obtain detailed and accurate HERV-K HML-2 expression profiles. We have now applied this approach to study HERV-K expression in the presence and absence of productive HIV-1 infection of primary human CD4(+) T cells. In addition to using SMRT sequencing, our strategy also includes the magnetic selection of the infected cells so that levels of background expression due to uninfected cells are kept at a minimum. The results in this manuscript provide the blueprint for in-depth studies of the interactions of the authentic upregulated HERV-K HML-2 elements and HIV-1. Copyright © 2017 American Society for Microbiology.


September 22, 2019  |  

A novel lactobacilli-based teat disinfectant for improving bacterial communities in the milks of cow teats with subclinical mastitis.

Teat disinfection pre- and post-milking is important for the overall health and hygiene of dairy cows. The objective of this study was to evaluate the efficacy of a novel probiotic lactobacilli-based teat disinfectant based on changes in somatic cell count (SCC) and profiling of the bacterial community. A total of 69 raw milk samples were obtained from eleven Holstein-Friesian dairy cows over 12 days of teat dipping in China. Single molecule, real-time sequencing technology (SMRT) was employed to profile changes in the bacterial community during the cleaning protocol and to compare the efficacy of probiotic lactic acid bacteria (LAB) and commercial teat disinfectants. The SCC gradually decreased following the cleaning protocol and the SCC of the LAB group was slightly lower than that of the commercial disinfectant (CD) group. Our SMRT sequencing results indicate that raw milk from both the LAB and CD groups contained diverse microbial populations that changed over the course of the cleaning protocol. The relative abundances of some species were significantly changed during the cleaning process, which may explain the observed bacterial community differences. Collectively, these results suggest that the LAB disinfectant could reduce mastitis-associated bacteria and improve the microbial environment of the cow teat. It could be used as an alternative to chemical pre- and post-milking teat disinfectants to maintain healthy teats and udders. In addition, the Pacific Biosciences SMRT sequencing with the full-length 16S ribosomal RNA gene was shown to be a powerful tool for monitoring changes in the bacterial population during the cleaning protocol.


September 22, 2019  |  

Global dissection of alternative splicing uncovers transcriptional diversity in tissues and associates with the flavonoid pathway in tea plant (Camellia sinensis).

Alternative splicing (AS) regulates mRNA at the post-transcriptional level to change gene function in organisms. However, little is known about the AS and its roles in tea plant (Camellia sinensis), widely cultivated for making a popular beverage tea.In our study, the AS landscape and dynamics were characterized in eight tissues (bud, young leaf, summer mature leaf, winter old leaf, stem, root, flower, fruit) of tea plant by Illumina RNA-Seq and confirmed by Iso-Seq. The most abundant AS (~?20%) was intron retention and involved in RNA processes. The some alternative splicings were found to be tissue specific in stem and root etc. Thirteen co-expressed modules of AS transcripts were identified, which revealed a similar pattern between the bud and young leaves as well as a distinct pattern between seasons. AS events of structural genes including anthocyanidin reductase and MYB transcription factors were involved in biosynthesis of flavonoid, especially in vegetative tissues. The AS isoforms rather than the full-length ones were the major transcripts involved in flavonoid synthesis pathway, and is positively correlated with the catechins content conferring the tea taste. We propose that the AS is an important functional mechanism in regulating flavonoid metabolites.Our study provides the insight into the AS events underlying tea plant’s uniquely different developmental process and highlights the important contribution and efficacy of alternative splicing regulatory function to biosynthesis of flavonoids.


September 22, 2019  |  

ABC transporter mis-splicing associated with resistance to Bt toxin Cry2Ab in laboratory- and field-selected pink bollworm.

Evolution of pest resistance threatens the benefits of genetically engineered crops that produce Bacillus thuringiensis (Bt) insecticidal proteins. Strategies intended to delay pest resistance are most effective when implemented proactively. Accordingly, researchers have selected for and analyzed resistance to Bt toxins in many laboratory strains of pests before resistance evolves in the field, but the utility of this approach depends on the largely untested assumption that laboratory- and field-selected resistance to Bt toxins are similar. Here we compared the genetic basis of resistance to Bt toxin Cry2Ab, which is widely deployed in transgenic crops, between laboratory- and field-selected populations of the pink bollworm (Pectinophora gossypiella), a global pest of cotton. We discovered that resistance to Cry2Ab is associated with mutations disrupting the same ATP-binding cassette transporter gene (PgABCA2) in a laboratory-selected strain from Arizona, USA, and in field-selected populations from India. The most common mutation, loss of exon 6 caused by alternative splicing, occurred in resistant larvae from both locations. Together with previous data, the results imply that mutations in the same gene confer Bt resistance in laboratory- and field-selected strains and suggest that focusing on ABCA2 genes may help to accelerate progress in monitoring and managing resistance to Cry2Ab.


September 22, 2019  |  

Genome-wide transcriptome profiling of the medicinal plant Zanthoxylum planispinum using a single-molecule direct RNA sequencing approach.

High-throughput RNA sequencing has revolutionized transcriptome-based studies of candidate genes, key pathways and gene regulation in non-model organisms. We analyzed full-length cDNA sequences in Zanthoxylum planispinum (Z. planispinum), a medicinal herb in major parts of East Asia. The full-length mRNA derived from tissues of leaf, early fruit and maturing fruit stage were sequenced using PacBio RSII platform to identify isoform transcriptome. We obtained 51,402 unigenes, with average 1781?bp per gene in 82.473?Mb gene lengths. Among 51,402, 3963 unigenes showed variety of isoform. By selection of one representative gene among each of the various isoforms, we finalized 46,306 unique gene set for this herb. We identified 76 cytochrome P450 (CYP450) and related isoforms that are of the wide diversity in the molecular function and biological process. These transcriptome data of Z. planispinum will provide a good resource to study metabolic engineering for the production of valuable medicinal drugs and phytochemicals. Copyright © 2018. Published by Elsevier Inc.


September 22, 2019  |  

Long-read sequencing of the coffee bean transcriptome reveals the diversity of full-length transcripts.

Polyploidization contributes to the complexity of gene expression, resulting in numerous related but different transcripts. This study explored the transcriptome diversity and complexity of the tetraploid Arabica coffee (Coffea arabica) bean. Long-read sequencing (LRS) by Pacbio Isoform sequencing (Iso-seq) was used to obtain full-length transcripts without the difficulty and uncertainty of assembly required for reads from short-read technologies. The tetraploid transcriptome was annotated and compared with data from the sub-genome progenitors. Caffeine and sucrose genes were targeted for case analysis. An isoform-level tetraploid coffee bean reference transcriptome with 95 995 distinct transcripts (average 3236 bp) was obtained. A total of 88 715 sequences (92.42%) were annotated with BLASTx against NCBI non-redundant plant proteins, including 34 719 high-quality annotations. Further BLASTn analysis against NCBI non-redundant nucleotide sequences, Coffea canephora coding sequences with UTR, C. arabica ESTs, and Rfam resulted in 1213 sequences without hits, were potential novel genes in coffee. Longer UTRs were captured, especially in the 5?UTRs, facilitating the identification of upstream open reading frames. The LRS also revealed more and longer transcript variants in key caffeine and sucrose metabolism genes from this polyploid genome. Long sequences (>10 kilo base) were poorly annotated. LRS technology shows the limitation of previous studies. It provides an important tool to produce a reference transcriptome including more of the diversity of full-length transcripts to help understand the biology and support the genetic improvement of polyploid species such as coffee.© The Authors 2017. Published by Oxford University Press.


September 22, 2019  |  

Characterization of four C1q/TNF-related proteins (CTRPs) from red-lip mullet (Liza haematocheila) and their transcriptional modulation in response to bacterial and pathogen-associated molecular pattern stimuli.

The structural and evolutionary linkage between tumor necrosis factor (TNF) and the globular C1q (gC1q) domain defines the C1q and TNF-related proteins (CTRPs), which are involved in diverse functions such as immune defense, inflammation, apoptosis, autoimmunity, and cell differentiation. In this study, red-lip mullet (Liza haematocheila) CTRP4-like (MuCTRP4-like), CTRP5 (MuCTRP5), CTRP6 (MuCTRP6), and CTRP7 (MuCTRP7) were identified from the red-lip mullet transcriptome database and molecularly characterized. According to in silico analysis, coding sequences of MuCTRP4-like, MuCTRP5, MuCTRP6, and MuCTRP7 consisted of 1128, 753, 729, and 888 bp open reading frames (ORF), respectively and encoded 375, 250, 242, and 295 amino acids, respectively. All CTRPs possessed a putative C1q domain. Additionally, MuCTRP5, MuCTRP6, and MuCTRP7 consisted of a collagen region. Phylogenetic analysis exemplified that MuCTRPs were distinctly clustered with the respective CTRP orthologs. Tissue-specific expression analysis demonstrated that MuCTRP4-like was mostly expressed in the blood and intestine. Moreover, MuCTRP6 was highly expressed in the blood, whereas MuCTRP5 and MuCTRP7 were predominantly expressed in the muscle and stomach, respectively. According to the temporal expression in blood, all MuCTRPs exhibited significant modulations in response to polyinosinic:polycytidylic acid (poly I:C) and Lactococcus garvieae (L. garvieae). MuCTRP4-like, MuCTRP5, and MuCTRP6 showed significant upregulation in response to lipopolysaccharides (LPS). The results of this study suggest the potential involvement of Mullet CTRPs in post-immune responses. Copyright © 2018. Published by Elsevier Ltd.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.