Menu
September 22, 2019  |  

Membrane attack complex-associated molecules from redlip mullet (Liza haematocheila): Molecular characterization and transcriptional evidence of C6, C7, C8ß, and C9 in innate immunity.

Authors: Liyanage, D S and Omeka, W K M and Godahewa, G I and Lee, Seongdo and Nam, Bo-Hye and Lee, Jehee

The redlip mullet (Liza haematocheila) is one of the most economically important fish in Korea and other East Asian countries; it is susceptible to infections by pathogens such as Lactococcus garvieae, Argulus spp., Trichodina spp., and Vibrio spp. Learning about the mechanisms of the complement system of the innate immunity of redlip mullet is important for efforts towards eradicating pathogens. Here, we report a comprehensive study of the terminal complement complex (TCC) components that form the membrane attack complex (MAC) through in-silico characterization and comparative spatial and temporal expression profiling. Five conserved domains (TSP1, LDLa, MACPF, CCP, and FIMAC) were detected in the TCC components, but the CCP and FIMAC domains were absent in MuC8ß and MuC9. Expression analysis of four TCC genes from healthy redlip mullets showed the highest expression levels in the liver, whereas limited expression was observed in other tissues; immune-induced expression in the head kidney and spleen revealed significant responses against Lactococcus garvieae and poly I:C injection, suggesting their involvement in MAC formation in response to harmful pathogenic infections. Furthermore, the response to poly I:C may suggest the role of TCC components in the breakdown of the membrane of enveloped viruses. These findings may help to elucidate the mechanisms behind the complement system of the teleosts innate immunity. Copyright © 2018 Elsevier Ltd. All rights reserved.

Journal: Fish & shellfish immunology
DOI: 10.1016/j.fsi.2018.07.006
Year: 2018

Read publication

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.