Menu
July 7, 2019

Complete genome sequences of three Campylobacter jejuni phage-propagating strains.

Bacteriophage therapy can potentially reduce Campylobacter jejuni numbers in livestock, but it requires a detailed understanding of phage-host interactions. C. jejuni strains readily infected by certain phages are designated as phage-propagating strains. Here, we report the complete genome sequences of three such strains, NCTC 12660, NCTC 12661, and NCTC 12664. Copyright © 2018 Sacher et al.


July 7, 2019

Complete genome sequence of a novel mutant strain of Vibrio parahaemolyticus from Pacific White Shrimp (Penaeus vannamei).

The acute hepatopancreatic necrosis disease (AHPND) of Penaeus vannamei shrimp is caused by Vibrio parahaemolyticus carrying toxin genes, pirA and pirB We report the complete genome sequence of the novel V. parahaemolyticus strain R14, which did not display AHPND symptoms in P. vannamei despite containing the binary toxin genes. Copyright © 2018 Kanrar and Dhar.


July 7, 2019

Complete genome sequence of Bacillus subtilis strain DKU_NT_02, isolated from traditional Korean food using soybean (chung-gook-jang) for high-quality poly-?-glutamic acid activity.

The complete genome sequence of Bacillus subtilis strain DKU_NT_02, isolated from traditional Korean food using soybeans (chung-gook-jang), is presented here. This strain was chosen to help identify genetic factors with high-quality poly-?-glutamic acid (?PGA) activity. Copyright © 2018 Bang et al.


July 7, 2019

Complete genome sequences of three Bacillus amyloliquefaciens strains that inhibit the growth of Listeria monocytogenes in vitro.

Here, we report the complete genome sequences of three Bacillus amyloliquefaciens strains isolated from alfalfa, almond drupes, and grapes that inhibited the growth of Listeria monocytogenes strain 2011L-2857 in vitro We also report multiple gene clusters encoding secondary metabolites that may be responsible for the growth inhibition of L. monocytogenes. Copyright © 2018 Tran et al.


July 7, 2019

Genome sequences of Shewanella baltica and Shewanella morhuae strains isolated from the gastrointestinal tract of freshwater fish.

We present here the genome sequences of Shewanella baltica strain CW2 and Shewanella morhuae strain CW7, isolated from the gastrointestinal tract of Salvelinus namaycush (lean lake trout) and Coregonus clupeaformis (whitefish), respectively. These genome sequences provide insights into the niche adaptation of these specific species in freshwater systems. Copyright © 2018 Castillo et al.


July 7, 2019

Complete genome sequence of Mycobacterium shigaense.

Mycobacterium shigaense is a slowly growing scotochromogenic species and a member of the Mycobacterium simiae complex group. Here, we report the complete sequence of its genome, comprising a 5.2-Mb chromosome. The sequence will represent the essential data for future phylogenetic and comparative genome studies of the Mycobacterium simiae complex group. Copyright © 2018 Yoshida et al.


July 7, 2019

Genome sequence of Bacillus megaterium strain YC4-R4, a plant growth- promoting rhizobacterium isolated from a high-salinity environment.

Here, we report the complete genome sequence for Bacillus megaterium strain YC4-R4, a highly salt-tolerant rhizobacterium that promotes growth in plants. The sequencing process was performed by combining pyrosequencing and single-molecule sequencing techniques. The complete genome is estimated to be approximately 5.44 Mb, containing a total of 5,673 predicted protein-coding DNA sequences (CDSs). Copyright © 2018 Vílchez et al.


July 7, 2019

ARKS: chromosome-scale scaffolding of human genome drafts with linked read kmers.

The long-range sequencing information captured by linked reads, such as those available from 10× Genomics (10xG), helps resolve genome sequence repeats, and yields accurate and contiguous draft genome assemblies. We introduce ARKS, an alignment-free linked read genome scaffolding methodology that uses linked reads to organize genome assemblies further into contiguous drafts. Our approach departs from other read alignment-dependent linked read scaffolders, including our own (ARCS), and uses a kmer-based mapping approach. The kmer mapping strategy has several advantages over read alignment methods, including better usability and faster processing, as it precludes the need for input sequence formatting and draft sequence assembly indexing. The reliance on kmers instead of read alignments for pairing sequences relaxes the workflow requirements, and drastically reduces the run time.Here, we show how linked reads, when used in conjunction with Hi-C data for scaffolding, improve a draft human genome assembly of PacBio long-read data five-fold (baseline vs. ARKS NG50?=?4.6 vs. 23.1 Mbp, respectively). We also demonstrate how the method provides further improvements of a megabase-scale Supernova human genome assembly (NG50?=?14.74 Mbp vs. 25.94 Mbp before and after ARKS), which itself exclusively uses linked read data for assembly, with an execution speed six to nine times faster than competitive linked read scaffolders (~?10.5 h compared to 75.7 h, on average). Following ARKS scaffolding of a human genome 10xG Supernova assembly (of cell line NA12878), fewer than 9 scaffolds cover each chromosome, except the largest (chromosome 1, n?=?13).ARKS uses a kmer mapping strategy instead of linked read alignments to record and associate the barcode information needed to order and orient draft assembly sequences. The simplified workflow, when compared to that of our initial implementation, ARCS, markedly improves run time performances on experimental human genome datasets. Furthermore, the novel distance estimator in ARKS utilizes barcoding information from linked reads to estimate gap sizes. It accomplishes this by modeling the relationship between known distances of a region within contigs and calculating associated Jaccard indices. ARKS has the potential to provide correct, chromosome-scale genome assemblies, promptly. We expect ARKS to have broad utility in helping refine draft genomes.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.