Menu
April 21, 2020  |  

Sequencing a Juglans regia?×?J. microcarpa hybrid yields high-quality genome assemblies of parental species.

Members of the genus Juglans are monecious wind-pollinated trees in the family Juglandaceae with highly heterozygous genomes, which greatly complicates genome sequence assembly. The genomes of interspecific hybrids are usually comprised of haploid genomes of parental species. We exploited this attribute of interspecific hybrids to avoid heterozygosity and sequenced an interspecific hybrid Juglans microcarpa?×?J. regia using a novel combination of single-molecule sequencing and optical genome mapping technologies. The resulting assemblies of both genomes were remarkably complete including chromosome termini and centromere regions. Chromosome termini consisted of arrays of telomeric repeats about 8?kb long and heterochromatic subtelomeric regions about 10?kb long. The centromeres consisted of arrays of a centromere-specific Gypsy retrotransposon and most contained genes, many of them transcribed. Juglans genomes evolved by a whole-genome-duplication dating back to the Cretaceous-Paleogene boundary and consist of two subgenomes, which were fractionated by numerous short gene deletions evenly distributed along the length of the chromosomes. Fractionation was shown to be asymmetric with one subgenome exhibiting greater gene loss than the other. The asymmetry of the process is ongoing and mirrors an asymmetry in gene expression between the subgenomes. Given the importance of J. microcarpa?×?J. regia hybrids as potential walnut rootstocks, we catalogued disease resistance genes in the parental genomes and studied their chromosomal distribution. We also estimated the molecular clock rates for woody perennials and deployed them in estimating divergence times of Juglans genomes and those of other woody perennials.


April 21, 2020  |  

Differential retention of transposable element-derived sequences in outcrossing Arabidopsis genomes.

Transposable elements (TEs) are genomic parasites with major impacts on host genome architecture and host adaptation. A proper evaluation of their evolutionary significance has been hampered by the paucity of short scale phylogenetic comparisons between closely related species. Here, we characterized the dynamics of TE accumulation at the micro-evolutionary scale by comparing two closely related plant species, Arabidopsis lyrata and A. halleri.Joint genome annotation in these two outcrossing species confirmed that both contain two distinct populations of TEs with either ‘recent’ or ‘old’ insertion histories. Identification of rare segregating insertions suggests that diverse TE families contribute to the ongoing dynamics of TE accumulation in the two species. Orthologous TE fragments (i.e. those that have been maintained in both species), tend to be located closer to genes than those that are retained in one species only. Compared to non-orthologous TE insertions, those that are orthologous tend to produce fewer short interfering RNAs, are less heavily methylated when found within or adjacent to genes and these tend to have lower expression levels. These findings suggest that long-term retention of TE insertions reflects their frequent acquisition of adaptive roles and/or the deleterious effects of removing nearly neutral TE insertions when they are close to genes.Our results indicate a rapid evolutionary dynamics of the TE landscape in these two outcrossing species, with an important input of a diverse set of new insertions with variable propensity to resist deletion.


April 21, 2020  |  

Construction of JRG (Japanese reference genome) with single-molecule real-time sequencing

In recent genome analyses, population-specific reference panels have indicated important. However, reference panels based on short-read sequencing data do not sufficiently cover long insertions. Therefore, the nature of long insertions has not been well documented. Here, we assembled a Japanese genome using single-molecule real-time sequencing data and characterized insertions found in the assembled genome. We identified 3691 insertions ranging from 100?bps to ~10,000?bps in the assembled genome relative to the international reference sequence (GRCh38). To validate and characterize these insertions, we mapped short-reads from 1070 Japanese individuals and 728 individuals from eight other populations to insertions integrated into GRCh38. With this result, we constructed JRGv1 (Japanese Reference Genome version 1) by integrating the 903 verified insertions, totaling 1,086,173 bases, shared by at least two Japanese individuals into GRCh38. We also constructed decoyJRGv1 by concatenating 3559 verified insertions, totaling 2,536,870 bases, shared by at least two Japanese individuals or by six other assemblies. This assembly improved the alignment ratio by 0.4% on average. These results demonstrate the importance of refining the reference assembly and creating a population-specific reference genome. JRGv1 and decoyJRGv1 are available at the JRG website.


April 21, 2020  |  

Horizontal transfer of a retrotransposon between parasitic nematodes and the common shrew.

As the genomes of more metazoan species are sequenced, reports of horizontal transposon transfers (HTT) have increased. Our understanding of the mechanisms of such events is at an early stage. The close physical relationship between a parasite and its host could facilitate horizontal transfer. To date, two studies have identified horizontal transfer of RTEs, a class of retrotransposable elements, involving parasites: ticks might act as vector for BovB between ruminants and squamates, and AviRTE was transferred between birds and parasitic nematodes.We searched for RTEs shared between nematode and mammalian genomes. Given their physical proximity, it was necessary to detect and remove sequence contamination from the genome datasets, which would otherwise distort the signal of horizontal transfer. We developed an approach that is based on reads instead of genomic sequences to reliably detect contamination. From comparison of 43 RTEs across 197 genomes, we identified a single putative case of horizontal transfer: we detected RTE1_Sar from Sorex araneus, the common shrew, in parasitic nematodes. From the taxonomic distribution and evolutionary analysis, we show that RTE1_Sar was horizontally transferred.We identified a new horizontal RTE transfer in host-parasite interactions, which suggests that it is not uncommon. Further, we present and provide the workflow a read-based method to distinguish between contamination and horizontal transfer.


April 21, 2020  |  

Retrotranspositional landscape of Asian rice revealed by 3000 genomes.

The recent release of genomic sequences for 3000 rice varieties provides access to the genetic diversity at species level for this crop. We take advantage of this resource to unravel some features of the retrotranspositional landscape of rice. We develop software TRACKPOSON specifically for the detection of transposable elements insertion polymorphisms (TIPs) from large datasets. We apply this tool to 32 families of retrotransposons and identify more than 50,000 TIPs in the 3000 rice genomes. Most polymorphisms are found at very low frequency, suggesting that they may have occurred recently in agro. A genome-wide association study shows that these activations in rice may be triggered by external stimuli, rather than by the alteration of genetic factors involved in transposable element silencing pathways. Finally, the TIPs dataset is used to trace the origin of rice domestication. Our results suggest that rice originated from three distinct domestication events.


October 23, 2019  |  

Sites of retroviral DNA integration: From basic research to clinical applications.

One of the most crucial steps in the life cycle of a retrovirus is the integration of the viral DNA (vDNA) copy of the RNA genome into the genome of an infected host cell. Integration provides for efficient viral gene expression as well as for the segregation of viral genomes to daughter cells upon cell division. Some integrated viruses are not well expressed, and cells latently infected with human immunodeficiency virus type 1 (HIV-1) can resist the action of potent antiretroviral drugs and remain dormant for decades. Intensive research has been dedicated to understanding the catalytic mechanism of integration, as well as the viral and cellular determinants that influence integration site distribution throughout the host genome. In this review, we summarize the evolution of techniques that have been used to recover and map retroviral integration sites, from the early days that first indicated that integration could occur in multiple cellular DNA locations, to current technologies that map upwards of millions of unique integration sites from single in vitro integration reactions or cell culture infections. We further review important insights gained from the use of such mapping techniques, including the monitoring of cell clonal expansion in patients treated with retrovirus-based gene therapy vectors, or patients with acquired immune deficiency syndrome (AIDS) on suppressive antiretroviral therapy (ART). These insights span from integrase (IN) enzyme sequence preferences within target DNA (tDNA) at the sites of integration, to the roles of host cellular proteins in mediating global integration distribution, to the potential relationship between genomic location of vDNA integration site and retroviral latency.


October 23, 2019  |  

Transmission, evolution, and endogenization: Lessons learned from recent retroviral invasions.

Viruses of the subfamily Orthoretrovirinaeare defined by the ability to reverse transcribe an RNA genome into DNA that integrates into the host cell genome during the intracellular virus life cycle. Exogenous retroviruses (XRVs) are horizontally transmitted between host individuals, with disease outcome depending on interactions between the retrovirus and the host organism. When retroviruses infect germ line cells of the host, they may become endogenous retroviruses (ERVs), which are permanent elements in the host germ line that are subject to vertical transmission. These ERVs sometimes remain infectious and can themselves give rise to XRVs. This review integrates recent developments in the phylogenetic classification of retroviruses and the identification of retroviral receptors to elucidate the origins and evolution of XRVs and ERVs. We consider whether ERVs may recurrently pressure XRVs to shift receptor usage to sidestep ERV interference. We discuss how related retroviruses undergo alternative fates in different host lineages after endogenization, with koala retrovirus (KoRV) receiving notable interest as a recent invader of its host germ line. KoRV is heritable but also infectious, which provides insights into the early stages of germ line invasions as well as XRV generation from ERVs. The relationship of KoRV to primate and other retroviruses is placed in the context of host biogeography and the potential role of bats and rodents as vectors for interspecies viral transmission. Combining studies of extant XRVs and “fossil” endogenous retroviruses in koalas and other Australasian species has broadened our understanding of the evolution of retroviruses and host-retrovirus interactions. Copyright © 2017 American Society for Microbiology.


September 22, 2019  |  

A chromosome conformation capture ordered sequence of the barley genome.

Cereal grasses of the Triticeae tribe have been the major food source in temperate regions since the dawn of agriculture. Their large genomes are characterized by a high content of repetitive elements and large pericentromeric regions that are virtually devoid of meiotic recombination. Here we present a high-quality reference genome assembly for barley (Hordeum vulgare L.). We use chromosome conformation capture mapping to derive the linear order of sequences across the pericentromeric space and to investigate the spatial organization of chromatin in the nucleus at megabase resolution. The composition of genes and repetitive elements differs between distal and proximal regions. Gene family analyses reveal lineage-specific duplications of genes involved in the transport of nutrients to developing seeds and the mobilization of carbohydrates in grains. We demonstrate the importance of the barley reference sequence for breeding by inspecting the genomic partitioning of sequence variation in modern elite germplasm, highlighting regions vulnerable to genetic erosion.


September 22, 2019  |  

The state of long non-coding RNA biology.

Transcriptomic studies have demonstrated that the vast majority of the genomes of mammals and other complex organisms is expressed in highly dynamic and cell-specific patterns to produce large numbers of intergenic, antisense and intronic long non-protein-coding RNAs (lncRNAs). Despite well characterized examples, their scaling with developmental complexity, and many demonstrations of their association with cellular processes, development and diseases, lncRNAs are still to be widely accepted as major players in gene regulation. This may reflect an underappreciation of the extent and precision of the epigenetic control of differentiation and development, where lncRNAs appear to have a central role, likely as organizational and guide molecules: most lncRNAs are nuclear-localized and chromatin-associated, with some involved in the formation of specialized subcellular domains. I suggest that a reassessment of the conceptual framework of genetic information and gene expression in the 4-dimensional ontogeny of spatially organized multicellular organisms is required. Together with this and further studies on their biology, the key challenges now are to determine the structure?function relationships of lncRNAs, which may be aided by emerging evidence of their modular structure, the role of RNA editing and modification in enabling epigenetic plasticity, and the role of RNA signaling in transgenerational inheritance of experience.


September 22, 2019  |  

The maize W22 genome provides a foundation for functional genomics and transposon biology.

The maize W22 inbred has served as a platform for maize genetics since the mid twentieth century. To streamline maize genome analyses, we have sequenced and de novo assembled a W22 reference genome using short-read sequencing technologies. We show that significant structural heterogeneity exists in comparison to the B73 reference genome at multiple scales, from transposon composition and copy number variation to single-nucleotide polymorphisms. The generation of this reference genome enables accurate placement of thousands of Mutator (Mu) and Dissociation (Ds) transposable element insertions for reverse and forward genetics studies. Annotation of the genome has been achieved using RNA-seq analysis, differential nuclease sensitivity profiling and bisulfite sequencing to map open reading frames, open chromatin sites and DNA methylation profiles, respectively. Collectively, the resources developed here integrate W22 as a community reference genome for functional genomics and provide a foundation for the maize pan-genome.


September 22, 2019  |  

ABC transporter mis-splicing associated with resistance to Bt toxin Cry2Ab in laboratory- and field-selected pink bollworm.

Evolution of pest resistance threatens the benefits of genetically engineered crops that produce Bacillus thuringiensis (Bt) insecticidal proteins. Strategies intended to delay pest resistance are most effective when implemented proactively. Accordingly, researchers have selected for and analyzed resistance to Bt toxins in many laboratory strains of pests before resistance evolves in the field, but the utility of this approach depends on the largely untested assumption that laboratory- and field-selected resistance to Bt toxins are similar. Here we compared the genetic basis of resistance to Bt toxin Cry2Ab, which is widely deployed in transgenic crops, between laboratory- and field-selected populations of the pink bollworm (Pectinophora gossypiella), a global pest of cotton. We discovered that resistance to Cry2Ab is associated with mutations disrupting the same ATP-binding cassette transporter gene (PgABCA2) in a laboratory-selected strain from Arizona, USA, and in field-selected populations from India. The most common mutation, loss of exon 6 caused by alternative splicing, occurred in resistant larvae from both locations. Together with previous data, the results imply that mutations in the same gene confer Bt resistance in laboratory- and field-selected strains and suggest that focusing on ABCA2 genes may help to accelerate progress in monitoring and managing resistance to Cry2Ab.


September 22, 2019  |  

Fine mapping and candidate gene identification of the genic male-sterile gene ms3 in cabbage 51S.

The ms3 gene responsible for a male-sterile phenotype in cabbage was mapped to a 187.4-kb genomic fragment. The gene BoTPD1, a homolog of Arabidopsis TPD1, was identified as a strong candidate gene. Cabbage 51S is a spontaneous male-sterile mutant. Phenotypic investigation revealed defects in anther cell differentiation, with failure to form the tapetum layer and complete abortion of microsporocytes before the tetrad stage. Genetic analysis indicated that this male sterility was controlled by a single recessive gene, ms3. Using an F2 population, we mapped ms3 to a 187.4-kb interval. BoTPD1 was identified as a candidate from this interval. Sequence analysis revealed an intronic 182-bp insertion in 51S that interrupted the conserved motif at the 5′ splicing site of the third intron, possibly resulting in a truncated transcript. Analyses of BoTPD1 homologous proteins revealed evolutionarily conserved roles in anther cell fate determination during reproductive development. RT-PCR showed that BoTPD1 was expressed in various tissues, excluding the root, and high expression levels were detected in anthers and buds. A BoTPD1-specific marker based on the 182-bp insertion cosegregated with male sterility and can be used for marker-assisted selection.


September 22, 2019  |  

Isoform sequencing provides a more comprehensive view of the Panax ginseng transcriptome.

Korean ginseng (Panax ginseng C.A. Meyer) has been widely used for medicinal purposes and contains potent plant secondary metabolites, including ginsenosides. To obtain transcriptomic data that offers a more comprehensive view of functional genomics in P. ginseng, we generated genome-wide transcriptome data from four different P. ginseng tissues using PacBio isoform sequencing (Iso-Seq) technology. A total of 135,317 assembled transcripts were generated with an average length of 3.2 kb and high assembly completeness. Of those unigenes, 67.5% were predicted to be complete full-length (FL) open reading frames (ORFs) and exhibited a high gene annotation rate. Furthermore, we successfully identified unique full-length genes involved in triterpenoid saponin synthesis and plant hormonal signaling pathways, including auxin and cytokinin. Studies on the functional genomics of P. ginseng seedlings have confirmed the rapid upregulation of negative feed-back loops by auxin and cytokinin signaling cues. The conserved evolutionary mechanisms in the auxin and cytokinin canonical signaling pathways of P. ginseng are more complex than those in Arabidopsis thaliana. Our analysis also revealed a more detailed view of transcriptome-wide alternative isoforms for 88 genes. Finally, transposable elements (TEs) were also identified, suggesting transcriptional activity of TEs in P. ginseng. In conclusion, our results suggest that long-read, full-length or partial-unigene data with high-quality assemblies are invaluable resources as transcriptomic references in P. ginseng and can be used for comparative analyses in closely related medicinal plants.


September 22, 2019  |  

Sixteen diverse laboratory mouse reference genomes define strain-specific haplotypes and novel functional loci.

We report full-length draft de novo genome assemblies for 16 widely used inbred mouse strains and find extensive strain-specific haplotype variation. We identify and characterize 2,567 regions on the current mouse reference genome exhibiting the greatest sequence diversity. These regions are enriched for genes involved in pathogen defence and immunity and exhibit enrichment of transposable elements and signatures of recent retrotransposition events. Combinations of alleles and genes unique to an individual strain are commonly observed at these loci, reflecting distinct strain phenotypes. We used these genomes to improve the mouse reference genome, resulting in the completion of 10 new gene structures. Also, 62 new coding loci were added to the reference genome annotation. These genomes identified a large, previously unannotated, gene (Efcab3-like) encoding 5,874 amino acids. Mutant Efcab3-like mice display anomalies in multiple brain regions, suggesting a possible role for this gene in the regulation of brain development.


September 22, 2019  |  

Genome and evolution of the shade-requiring medicinal herb Panax ginseng.

Panax ginseng C. A. Meyer, reputed as the king of medicinal herbs, has slow growth, long generation time, low seed production and complicated genome structure that hamper its study. Here, we unveil the genomic architecture of tetraploid P. ginseng by de novo genome assembly, representing 2.98 Gbp with 59 352 annotated genes. Resequencing data indicated that diploid Panax species diverged in association with global warming in Southern Asia, and two North American species evolved via two intercontinental migrations. Two whole genome duplications (WGD) occurred in the family Araliaceae (including Panax) after divergence with the Apiaceae, the more recent one contributing to the ability of P. ginseng to overwinter, enabling it to spread broadly through the Northern Hemisphere. Functional and evolutionary analyses suggest that production of pharmacologically important dammarane-type ginsenosides originated in Panax and are produced largely in shoot tissues and transported to roots; that newly evolved P. ginseng fatty acid desaturases increase freezing tolerance; and that unprecedented retention of chlorophyll a/b binding protein genes enables efficient photosynthesis under low light. A genome-scale metabolic network provides a holistic view of Panax ginsenoside biosynthesis. This study provides valuable resources for improving medicinal values of ginseng either through genomics-assisted breeding or metabolic engineering.© 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.