X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, September 22, 2019

Genome and evolution of the shade-requiring medicinal herb Panax ginseng.

Panax ginseng C. A. Meyer, reputed as the king of medicinal herbs, has slow growth, long generation time, low seed production and complicated genome structure that hamper its study. Here, we unveil the genomic architecture of tetraploid P. ginseng by de novo genome assembly, representing 2.98 Gbp with 59 352 annotated genes. Resequencing data indicated that diploid Panax species diverged in association with global warming in Southern Asia, and two North American species evolved via two intercontinental migrations. Two whole genome duplications (WGD) occurred in the family Araliaceae (including Panax) after divergence with the Apiaceae, the more recent one contributing to the ability…

Read More »

Sunday, September 22, 2019

Genome-wide characterization of human L1 antisense promoter-driven transcripts.

Long INterspersed Element-1 (LINE-1 or L1) is the only autonomously active, transposable element in the human genome. L1 sequences comprise approximately 17 % of the human genome, but only the evolutionarily recent, human-specific subfamily is retrotransposition competent. The L1 promoter has a bidirectional orientation containing a sense promoter that drives the transcription of two proteins required for retrotransposition and an antisense promoter. The L1 antisense promoter can drive transcription of chimeric transcripts: 5′ L1 antisense sequences spliced to the exons of neighboring genes.The impact of L1 antisense promoter activity on cellular transcriptomes is poorly understood. To investigate this, we analyzed GenBank…

Read More »

Sunday, September 22, 2019

Meeting report: processing, translation, decay – three ways to keep RNA sizzling.

This meeting report highlights key trends that emerged from a conference entitled Post-Transcriptional Gene Regulation in Plants, which was held 14-15 July 2016, as a satellite meeting of the annual meeting of the American Society of Plant Biologists in Austin, Texas. The molecular biology of RNA is emerging as an integral part of the framework for plants’ responses to environmental challenges such as drought and heat, hypoxia, nutrient deprivation, light and pathogens. Moreover, the conference illustrated how a multitude of customized and pioneering omics-related technologies are being applied, more and more often in combination, to describe and dissect the complexities…

Read More »

Sunday, September 22, 2019

A comprehensive approach to expression of L1 loci.

L1 elements represent the only currently active, autonomous retrotransposon in the human genome, and they make major contributions to human genetic instability. The vast majority of the 500 000 L1 elements in the genome are defective, and only a relatively few can contribute to the retrotransposition process. However, there is currently no comprehensive approach to identify the specific loci that are actively transcribed separate from the excess of L1-related sequences that are co-transcribed within genes. We have developed RNA-Seq procedures, as well as a 1200 bp 5? RACE product coupled with PACBio sequencing that can identify the specific L1 loci…

Read More »

Sunday, September 22, 2019

The expressed portion of the barley genome

In this chapter, we refer to the expressed portion of the barley genome as the relatively small fraction of the total cellular DNA that either contains the genes that ultimately produce proteins, or that directly/indirectly controls the level, location and/or timing of when these genes are expressed and proteins are produced. We start by describing the dynamics of tissue and time-dependent gene expression and how common patterns across multiple samples can provide clues about gene networks involved in common biological processes. We then describe some of the complexities of how a single mRNA template can be differentially processed by alternative…

Read More »

Sunday, September 22, 2019

De novo transcriptome assembly of drought tolerant CAM plants, Agave deserti and Agave tequilana.

Agaves are succulent monocotyledonous plants native to xeric environments of North America. Because of their adaptations to their environment, including crassulacean acid metabolism (CAM, a water-efficient form of photosynthesis), and existing technologies for ethanol production, agaves have gained attention both as potential lignocellulosic bioenergy feedstocks and models for exploring plant responses to abiotic stress. However, the lack of comprehensive Agave sequence datasets limits the scope of investigations into the molecular-genetic basis of Agave traits.Here, we present comprehensive, high quality de novo transcriptome assemblies of two Agave species, A. tequilana and A. deserti, built from short-read RNA-seq data. Our analyses support…

Read More »

Sunday, September 22, 2019

De novo assembly of a Chinese soybean genome.

Soybean was domesticated in China and has become one of the most important oilseed crops. Due to bottlenecks in their introduction and dissemination, soybeans from different geographic areas exhibit extensive genetic diversity. Asia is the largest soybean market; therefore, a high-quality soybean reference genome from this area is critical for soybean research and breeding. Here, we report the de novo assembly and sequence analysis of a Chinese soybean genome for “Zhonghuang 13” by a combination of SMRT, Hi-C and optical mapping data. The assembled genome size is 1.025 Gb with a contig N50 of 3.46 Mb and a scaffold N50…

Read More »

Sunday, September 22, 2019

Rewired RNAi-mediated genome surveillance in house dust mites.

House dust mites are common pests with an unusual evolutionary history, being descendants of a parasitic ancestor. Transition to parasitism is frequently accompanied by genome rearrangements, possibly to accommodate the genetic change needed to access new ecology. Transposable element (TE) activity is a source of genomic instability that can trigger large-scale genomic alterations. Eukaryotes have multiple transposon control mechanisms, one of which is RNA interference (RNAi). Investigation of the dust mite genome failed to identify a major RNAi pathway: the Piwi-associated RNA (piRNA) pathway, which has been replaced by a novel small-interfering RNA (siRNA)-like pathway. Co-opting of piRNA function by…

Read More »

Sunday, September 22, 2019

Genome and secretome analysis of Pochonia chlamydosporia provide new insight into egg-parasitic mechanisms.

Pochonia chlamydosporia infects eggs and females of economically important plant-parasitic nematodes. The fungal isolates parasitizing different nematodes are genetically distinct. To understand their intraspecific genetic differentiation, parasitic mechanisms, and adaptive evolution, we assembled seven putative chromosomes of P. chlamydosporia strain 170 isolated from root-knot nematode eggs (~44?Mb, including 7.19% of transposable elements) and compared them with the genome of the strain 123 (~41?Mb) isolated from cereal cyst nematode. We focus on secretomes of the fungus, which play important roles in pathogenicity and fungus-host/environment interactions, and identified 1,750 secreted proteins, with a high proportion of carboxypeptidases, subtilisins, and chitinases. We analyzed…

Read More »

Sunday, September 22, 2019

Extreme haplotype variation in the desiccation-tolerant clubmoss Selaginella lepidophylla.

Plant genome size varies by four orders of magnitude, and most of this variation stems from dynamic changes in repetitive DNA content. Here we report the small 109?Mb genome of Selaginella lepidophylla, a clubmoss with extreme desiccation tolerance. Single-molecule sequencing enables accurate haplotype assembly of a single heterozygous S. lepidophylla plant, revealing extensive structural variation. We observe numerous haplotype-specific deletions consisting of largely repetitive and heavily methylated sequences, with enrichment in young Gypsy LTR retrotransposons. Such elements are active but rapidly deleted, suggesting “bloat and purge” to maintain a small genome size. Unlike all other land plant lineages, Selaginella has…

Read More »

Sunday, September 22, 2019

An ancient integration in a plant NLR is maintained as a trans-species polymorphism

Plant immune receptors are under constant selective pressure to maintain resistance to plant pathogens. Nucleotide-binding leucine-rich repeat (NLR) proteins are one class of cytoplasmic immune receptors whose genes commonly show signatures of adaptive evolution. While it is known that balancing selection contributes to maintaining high intraspecific allelic diversity, the evolutionary mechanism that influences the transmission of alleles during speciation remains unclear. The barley Mla locus has over 30 described alleles conferring isolate-specific resistance to barley powdery mildew and contains three NLR families (RGH1, RGH2, and RGH3). We discovered (using sequence capture and RNAseq) the presence of a novel integrated Exo70…

Read More »

Sunday, September 22, 2019

The genome of the Hi5 germ cell line from Trichoplusia ni, an agricultural pest and novel model for small RNA biology.

We report a draft assembly of the genome of Hi5 cells from the lepidopteran insect pest,Trichoplusia ni, assigning 90.6% of bases to one of 28 chromosomes and predicting 14,037 protein-coding genes. Chemoreception and detoxification gene families revealT. ni-specific gene expansions that may explain its widespread distribution and rapid adaptation to insecticides. Transcriptome and small RNA data from thorax, ovary, testis, and the germline-derived Hi5 cell line show distinct expression profiles for 295 microRNA- and >393 piRNA-producing loci, as well as 39 genes encoding small RNA pathway proteins. Nearly all of the W chromosome is devoted to piRNA production, andT. nisiRNAs…

Read More »

Sunday, September 22, 2019

Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza.

The genus Oryza is a model system for the study of molecular evolution over time scales ranging from a few thousand to 15 million years. Using 13 reference genomes spanning the Oryza species tree, we show that despite few large-scale chromosomal rearrangements rapid species diversification is mirrored by lineage-specific emergence and turnover of many novel elements, including transposons, and potential new coding and noncoding genes. Our study resolves controversial areas of the Oryza phylogeny, showing a complex history of introgression among different chromosomes in the young ‘AA’ subclade containing the two domesticated species. This study highlights the prevalence of functionally…

Read More »

Sunday, September 22, 2019

LTR_retriever: A highly accurate and sensitive program for identification of long terminal repeat retrotransposons.

Long terminal repeat retrotransposons (LTR-RTs) are prevalent in plant genomes. The identification of LTR-RTs is critical for achieving high-quality gene annotation. Based on the well-conserved structure, multiple programs were developed for the de novo identification of LTR-RTs; however, these programs are associated with low specificity and high false discovery rates. Here, we report LTR_retriever, a multithreading-empowered Perl program that identifies LTR-RTs and generates high-quality LTR libraries from genomic sequences. LTR_retriever demonstrated significant improvements by achieving high levels of sensitivity (91%), specificity (97%), accuracy (96%), and precision (90%) in rice (Oryza sativa). LTR_retriever is also compatible with long sequencing reads. With…

Read More »

Sunday, September 22, 2019

Sequence analysis of European maize inbred line F2 provides new insights into molecular and chromosomal characteristics of presence/absence variants.

Maize is well known for its exceptional structural diversity, including copy number variants (CNVs) and presence/absence variants (PAVs), and there is growing evidence for the role of structural variation in maize adaptation. While PAVs have been described in this important crop species, they have been only scarcely characterized at the sequence level and the extent of presence/absence variation and relative chromosomal landscape of inbred-specific regions remain to be elucidated.De novo genome sequencing of the French F2 maize inbred line revealed 10,044 novel genomic regions larger than 1 kb, making up 88 Mb of DNA, that are present in F2 but not in…

Read More »

1 2 3 4 5 6 8

Subscribe for blog updates:

Archives