April 21, 2020  |  

Draft Genome Sequences of Shiga Toxin-Producing Escherichia coli O157:H7 Strains Recovered from a Major Production Region for Leafy Greens in California.

Shiga toxin-producing Escherichia coli O157:H7 is a foodborne pathogen and is responsible for outbreaks of human gastroenteritis. This report documents the draft genome sequences of nine O157:H7 cattle strains, which were identified to be PCR positive for a Shiga toxin gene but displayed different levels of functional toxin activity.


April 21, 2020  |  

Conjugal Transfer, Whole-Genome Sequencing, and Plasmid Analysis of Four mcr-1-Bearing Isolates from U.S. Patients.

Four Enterobacteriaceae clinical isolates bearing mcr-1 gene-harboring plasmids were characterized. All isolates demonstrated the ability to transfer colistin resistance to Escherichia coli; plasmids were stable in conjugants after multiple passages on nonselective media. mcr-1 was located on an IncX4 (n?=?3) or IncN (n?=?1) plasmid. The IncN plasmid harbored 13 additional antimicrobial resistance genes. Results indicate that the mcr-1-bearing plasmids in this study were highly transferable in vitro and stable in the recipients.This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.


April 21, 2020  |  

Complete Genome Sequences of Three Shiga Toxin-Producing Escherichia coli O111:H8 Strains Exhibiting an Aggregation Phenotype.

Non-O157 Shiga toxin-producing Escherichia coli (STEC) strains are a common source of foodborne illness. STEC O111 is among the most prevalent non-O157 STEC serogroups. Few completed genomes of STEC O111 strains have been reported to date. We report here the complete genomic sequences of three O111:H8 strains that display a distinct aggregation phenotype.


April 21, 2020  |  

Transmission of ESBL-producing Escherichia coli between broilers and humans on broiler farms.

ESBL and AmpC ß-lactamases are an increasing concern for public health. Studies suggest that ESBL/pAmpC-producing Escherichia coli and their plasmids carrying antibiotic resistance genes can spread from broilers to humans working or living on broiler farms. These studies used traditional typing methods, which may not have provided sufficient resolution to reliably assess the relatedness of these isolates.Eleven suspected transmission events among broilers and humans living/working on eight broiler farms were investigated using whole-genome short-read (Illumina) and long-read sequencing (PacBio). Core genome MLST (cgMLST) was performed to investigate the occurrence of strain transmission. Horizontal plasmid and gene transfer were analysed using BLAST.Of eight suspected strain transmission events, six were confirmed. The isolate pairs had identical ESBL/AmpC genes and fewer than eight allelic differences according to the cgMLST, and five had an almost identical plasmid composition. On one of the farms, cgMLST revealed that the isolate pairs belonging to ST10 from a broiler and a household member of the farmer had 475 different alleles, but that the plasmids were identical, indicating horizontal transfer of mobile elements rather than strain transfer. Of three suspected horizontal plasmid transmission events, one was confirmed. In addition, gene transfer between plasmids was found.The present study confirms transmission of strains as well as horizontal plasmid and gene transfer between broilers and farmers and household members on the same farm. WGS is an important tool to confirm suspected zoonotic strain and resistance gene transmission. © The Author(s) 2019. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For permissions, please email: journals.permissions@oup.com.


April 21, 2020  |  

Complete genome sequence of an IMP-8, CTX-M-14, CTX-M-3 and QnrS1 co-producing Enterobacter asburiae isolate from a patient with wound infection.

The aim of this study was to investigate the characteristics and complete genome sequence of an IMP-8, CTX-M-14, CTX-M-3 and QnrS1 co-producing multidrug-resistant Enterobacter asburiae isolate (EN3600) from a patient with wound infection.Species identification was confirmed by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF/MS). Carbapenemase genes were identified by PCR and Sanger sequencing. The complete genome sequence of E. asburiae EN3600 was obtained using a PacBio RS II platform. Genome annotation was done by Rapid Annotation using Subsystem Technology (RAST) server. Acquired antimicrobial resistance genes (ARGs) and plasmid replicons were detected using ResFinder 2.1 and PlasmidFinder 1.3, respectively.The genome of E. asburiae EN3600 consists of a 4.8-Mbp chromosome and five plasmids. The annotated genome contains various ARGs conferring resistance to aminoglycosides, ß-lactams, fluoroquinolones, fosfomycin, macrolides, phenicols, rifampicin and sulfonamides. In addition, plasmids of incompatibility (Inc) groups IncHI2A, IncFIB(pECLA), IncFIB(pQil) and IncP1 were identified. The genes blaIMP-8, blaCTX-M-14 and blaCTX-M-3 were located on different plasmids. The blaIMP-8 gene was carried by an 86-kb IncFIB(pQil) plasmid. The blaCTX-M-3 and qnrS1 genes were co-harboured by an IncP1 plasmid. In addition, blaCTX-M-14 was associated with blaTEM-1B, blaOXA-1, catB3 and sul1 genes in a 116-kb non-typeable plasmid.To our knowledge, this is the first complete genome sequence of an E. asburiae isolate co-producing IMP-8, CTX-M-14, CTX-M-3 and QnrS1. This genome may facilitate the understanding of the resistome, pathogenesis and genomic features of Enterobacter cloacae complex (ECC) and will provide valuable information for accurate identification of ECC.Copyright © 2019 International Society for Antimicrobial Chemotherapy. Published by Elsevier Ltd. All rights reserved.


April 21, 2020  |  

A new variant of mcr-1 identified from an extended-spectrum ß lactamase-producing Escherichia coli.

Plasmid-mediated colistin resistance gene, mcr-1, has been widely reported almost all over the world. The product of the gene, MCR-1, is one of the members of the phosphoethanolamine transferase enzyme family, which can add phosphoethanolamine to lipid A, thus reducing affinity to polymyxins. Isolates carrying mcr-1 gene are often multidrug resistant (MDR), including co-production of MCR-1 and extended spectrum B lactamases (ESBLs) or carbapenemases, resulting in great clinical concerns.


April 21, 2020  |  

Antimicrobial resistance-encoding plasmid clusters with heterogeneous MDR regions driven by IS26 in a single Escherichia coli isolate.

IS26-flanked transposons played an increasingly important part in the mobilization and development of resistance determinants. Heterogeneous resistance-encoding plasmid clusters with polymorphic MDR regions (MRRs) conferred by IS26 in an individual Escherichia coli isolate have not yet been detected.To characterize the complete sequence of a novel blaCTX-M-65- and fosA3-carrying IncZ-7 plasmid with dynamic MRRs from an E. coli isolate, and to depict the mechanism underlying the spread of resistance determinants and genetic polymorphisms.The molecular characterization of a strain carrying blaCTX-M-65 and fosA3 was analysed by antimicrobial susceptibility testing and MLST. The transferability of a plasmid bearing blaCTX-M-65 and fosA3 was determined by conjugation assays, and the complete structure of the plasmid was obtained by Illumina, PacBio and conventional PCR mapping, respectively. The circular forms derived from IS26-flanked transposons were detected by reverse PCR and sequencing.A novel IncZ-7 plasmid pEC013 (~118kb) harbouring the blaCTX-M-65 and fosA3 genes was recovered from E. coli isolate EC013 belonging to D-ST117. The plasmid was found to have heterogeneous and dynamic MRRs in an individual strain and the IS26-flanked composite transposon-derived circular intermediates were identified and characterized in pEC013.The heterogeneous MRRs suggested that a single plasmid may actually be a cluster of plasmids with the same backbone but varied MRRs, reflecting the plasmid’s heterogeneity and the survival benefits of having a response to antimicrobial-related threatening conditions in an individual strain. © The Author(s) 2019. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For permissions, please email: journals.permissions@oup.com.


April 21, 2020  |  

Real time monitoring of Aeromonas salmonicida evolution in response to successive antibiotic therapies in a commercial fish farm.

Our ability to predict evolutionary trajectories of pathogens in response to antibiotic pressure is one of the promising leverage to fight against the present antibiotic resistance worldwide crisis. Yet, few studies tackled this question in situ at the outbreak level, due to the difficulty to link a given pathogenic clone evolution with its precise antibiotic exposure over time. In this study, we monitored the real-time evolution of an Aeromonas salmonicida clone in response to successive antibiotic and vaccine therapies in a commercial fish farm. The clone was responsible for a four-year outbreak of furunculosis within a Recirculating Aquaculture System Salmo salar farm in China, and we reconstructed the precise tempo of mobile genetic elements (MGEs) acquisition events during this period. The resistance profile provided by the acquired MGEs closely mirrored the antibiotics used to treat the outbreak, and we evidenced that two subclonal groups developed similar resistances although unrelated MGE acquisitions. Finally, we also demonstrated the efficiency of vaccination in outbreak management and its positive effect on antibiotic resistance prevalence. Our study provides unprecedented knowledge critical to understand evolutionary trajectories of resistant pathogens outside the laboratory. © 2019 Society for Applied Microbiology and John Wiley & Sons Ltd.


April 21, 2020  |  

Genome and plasmid diversity of Extended-Spectrum ß-Lactamase-producing Escherichia coli ST131 – tracking phylogenetic trajectories with Bayesian inference.

Clonal lineages of ESBL (Extended-Spectrum ß-Lactamase)-producing E. coli belonging to sequence type 131 (ST131) have disseminated globally during the last 30 years, leading to an increased prevalence of resistance to fluoroquinolones and extended-spectrum cephalosporins in clinical isolates of E. coli. We aimed to study if Swedish ESBL-producing ST131 isolates originated from single or multiple introductions to the population by assessing the amount of genetic variation, on chromosomal and plasmid level, between Swedish and international E. coli ST131. Bayesian inference of Swedish E. coli ST131 isolates (n?=?29), sequenced using PacBio RSII, together with an international ST131 dataset showed that the Swedish isolates were part of the international ST131 A, C1 and C2 clades. Highly conserved plasmids were identified in three clusters although they were separated by several years, which indicates a strong co-evolution between some ST131 lineages and specific plasmids. In conclusion, the tight clonal relationship observed within the ST131 clades, together with highly conserved plasmids, challenges investigation of strain transmission events. A combination of few SNPs on a genome-wide scale and an epidemiological temporospatial link, are needed to track the spread of the ST131 subclones.


April 21, 2020  |  

SMRT sequencing reveals differential patterns of methylation in two O111:H- STEC isolates from a hemolytic uremic syndrome outbreak in Australia.

In 1995 a severe haemolytic-uremic syndrome (HUS) outbreak in Adelaide occurred. A recent genomic analysis of Shiga toxigenic Escherichia coli (STEC) O111:H- strains 95JB1 and 95NR1 from this outbreak found that the more virulent isolate, 95NR1, harboured two additional copies of the Shiga toxin 2 (Stx2) genes encoded within prophage regions. The structure of the Stx2-converting prophages could not be fully resolved using short-read sequence data alone and it was not clear if there were other genomic differences between 95JB1 and 95NR1. In this study we have used Pacific Biosciences (PacBio) single molecule real-time (SMRT) sequencing to characterise the genome and methylome of 95JB1 and 95NR1. We completely resolved the structure of all prophages including two, tandemly inserted, Stx2-converting prophages in 95NR1 that were absent from 95JB1. Furthermore we defined all insertion sequences and found an additional IS1203 element in the chromosome of 95JB1. Our analysis of the methylome of 95NR1 and 95JB1 identified hemi-methylation of a novel motif (5′-CTGCm6AG-3′) in more than 4000 sites in the 95NR1 genome. These sites were entirely unmethylated in the 95JB1 genome, and included at least 177 potential promoter regions that could contribute to regulatory differences between the strains. IS1203 mediated deactivation of a novel type IIG methyltransferase in 95JB1 is the likely cause of the observed differential patterns of methylation between 95NR1 and 95JB1. This study demonstrates the capability of PacBio SMRT sequencing to resolve complex prophage regions and reveal the genetic and epigenetic heterogeneity within a clonal population of bacteria.


April 21, 2020  |  

Comparative genomics reveals structural and functional features specific to the genome of a foodborne Escherichia coli O157:H7.

Escherichia coli O157:H7 (O157) has been linked to numerous foodborne disease outbreaks. The ability to rapidly sequence and analyze genomes is important for understanding epidemiology, virulence, survival, and evolution of outbreak strains. In the current study, we performed comparative genomics to determine structural and functional features of the genome of a foodborne O157 isolate NADC 6564 and infer its evolutionary relationship to other O157 strains.The chromosome of NADC 6564 contained 5466?kb compared to reference strains Sakai (5498?kb) and EDL933 (5547?kb) and shared 41 of its 43 Linear Conserved Blocks (LCB) with the reference strains. However, 18 of 41 LCB had inverse orientation in NADC 6564 compared to the reference strains. NADC 6564 shared 18 of 19 bacteriophages with reference strains except that the chromosomal positioning of some of the phages differed among these strains. The additional phage (P19) of NADC 6564 was located on a 39-kb insertion element (IE) encoding several hypothetical proteins, an integrase, transposases, transcriptional regulators, an adhesin, and a phosphoethanolamine transferase (PEA). The complete homologs of the 39-kb?IE were found in E. coli PCN061 of porcine origin. The IE-encoded PEA showed low homology (32-33%) to four other PEA in NADC 6564 and PEA linked to mobilizable colistin resistance in E. coli but was highly homologous (95%) to a PEA of uropathogenic, avian pathogenic, and enteroaggregative E. coli. NADC 6564 showed slightly higher minimum inhibitory concentration of colistin compared to the reference strains. The 39-kb?IE also contained dndBCDE and dptFGH operons encoding DNA S-modification and a restriction pathway, linked to oxidative stress tolerance and self-defense against foreign DNA, respectively. Evolutionary tree analysis grouped NADC 6564 with lineage I O157 strains.These results indicated that differential phage counts and different chromosomal positioning of many bacteriophages and genomic islands might have resulted in recombination events causing altered chromosomal organization in NADC 6564. Evolutionary analysis grouped NADC 6564 with lineage I strains and suggested its earlier divergence from these strains. The ability to perform S-DNA modification might affect tolerance of NADC 6564 to various stressors.


April 21, 2020  |  

Characterization of an NDM-5 carbapenemase-producing Escherichia coli ST156 isolate from a poultry farm in Zhejiang, China.

The emergence of carbapenem-resistant Enterobacteriaceae strains has posed a severe threat to public health in recent years. The mobile elements carrying the New Delhi metallo-ß-lactqtamase (NDM) gene have been regarded as the major mechanism leading to the rapid increase of carbapenem-resistant Enterobacteriaceae strains isolated from clinics and animals.We describe an NDM-5-producing Escherichia coli strain, ECCRA-119 (sequence type 156 [ST156]), isolated from a poultry farm in Zhejiang, China. ECCRA-119 is a multidrug-resistant (MDR) isolate that exhibited resistance to 27 antimicrobial compounds, including imipenem and meropenem, as detected by antimicrobial susceptibility testing (AST). The complete genome sequence of the ECCRA-119 isolate was also obtained using the PacBio RS II platform. Eleven acquired resistance genes were identified in the chromosome; four were detected in plasmid pTB201, while six were detected in plasmid pTB202. Importantly, the carbapenem-resistant gene blaNDM-5 was detected in the IncX3 plasmid pTB203. In addition, seven virulence genes and one metal-resistance gene were also detected. The results of conjugation experiments and the transfer regions identification indicated that the blaNDM-5-harboring plasmid pTB203 could be transferred between E. coli strains.The results reflected the severe bacterial resistance in a poultry farm in Zhejiang province and increased our understanding of the presence and transmission of the blaNDM-5 gene.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.