Menu
April 21, 2020

Antimicrobial resistance-encoding plasmid clusters with heterogeneous MDR regions driven by IS26 in a single Escherichia coli isolate.

Authors: He, Dan Dan and Zhao, Shi Yu and Wu, Hua and Hu, Gong Zheng and Zhao, Jin Feng and Zong, Zhi Yong and Pan, Yu Shan

IS26-flanked transposons played an increasingly important part in the mobilization and development of resistance determinants. Heterogeneous resistance-encoding plasmid clusters with polymorphic MDR regions (MRRs) conferred by IS26 in an individual Escherichia coli isolate have not yet been detected.To characterize the complete sequence of a novel blaCTX-M-65- and fosA3-carrying IncZ-7 plasmid with dynamic MRRs from an E. coli isolate, and to depict the mechanism underlying the spread of resistance determinants and genetic polymorphisms.The molecular characterization of a strain carrying blaCTX-M-65 and fosA3 was analysed by antimicrobial susceptibility testing and MLST. The transferability of a plasmid bearing blaCTX-M-65 and fosA3 was determined by conjugation assays, and the complete structure of the plasmid was obtained by Illumina, PacBio and conventional PCR mapping, respectively. The circular forms derived from IS26-flanked transposons were detected by reverse PCR and sequencing.A novel IncZ-7 plasmid pEC013 (~118kb) harbouring the blaCTX-M-65 and fosA3 genes was recovered from E. coli isolate EC013 belonging to D-ST117. The plasmid was found to have heterogeneous and dynamic MRRs in an individual strain and the IS26-flanked composite transposon-derived circular intermediates were identified and characterized in pEC013.The heterogeneous MRRs suggested that a single plasmid may actually be a cluster of plasmids with the same backbone but varied MRRs, reflecting the plasmid's heterogeneity and the survival benefits of having a response to antimicrobial-related threatening conditions in an individual strain. © The Author(s) 2019. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For permissions, please email: [email protected].

Journal: The Journal of antimicrobial chemotherapy
DOI: 10.1093/jac/dkz044
Year: 2019

Read publication

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.