Menu
September 22, 2019

Draft genome sequence of wild Prunus yedoensis reveals massive inter-specific hybridization between sympatric flowering cherries.

Hybridization is an important evolutionary process that results in increased plant diversity. Flowering Prunus includes popular cherry species that are appreciated worldwide for their flowers. The ornamental characteristics were acquired both naturally and through artificially hybridizing species with heterozygous genomes. Therefore, the genome of hybrid flowering Prunus presents important challenges both in plant genomics and evolutionary biology.We use long reads to sequence and analyze the highly heterozygous genome of wild Prunus yedoensis. The genome assembly covers >?93% of the gene space; annotation identified 41,294 protein-coding genes. Comparative analysis of the genome with 16 accessions of six related taxa shows that 41% of the genes were assigned into the maternal or paternal state. This indicates that wild P. yedoensis is an F1 hybrid originating from a cross between maternal P. pendula f. ascendens and paternal P. jamasakura, and it can be clearly distinguished from its confusing taxon, Yoshino cherry. A focused analysis of the S-locus haplotypes of closely related taxa distributed in a sympatric natural habitat suggests that reduced restriction of inter-specific hybridization due to strong gametophytic self-incompatibility is likely to promote complex hybridization of wild Prunus species and the development of a hybrid swarm.We report the draft genome assembly of a natural hybrid Prunus species using long-read sequencing and sequence phasing. Based on a comprehensive comparative genome analysis with related taxa, it appears that cross-species hybridization in sympatric habitats is an ongoing process that facilitates the diversification of flowering Prunus.


September 22, 2019

Genomic approaches for studying crop evolution.

Understanding how crop plants evolved from their wild relatives and spread around the world can inform about the origins of agriculture. Here, we review how the rapid development of genomic resources and tools has made it possible to conduct genetic mapping and population genetic studies to unravel the molecular underpinnings of domestication and crop evolution in diverse crop species. We propose three future avenues for the study of crop evolution: establishment of high-quality reference genomes for crops and their wild relatives; genomic characterization of germplasm collections; and the adoption of novel methodologies such as archaeogenetics, epigenomics, and genome editing.


September 22, 2019

Genus-wide sequencing supports a two-locus model for sex-determination in Phoenix.

The date palm tree is a commercially important member of the genus Phoenix whose 14 species are dioecious with separate male and female individuals. To identify sex determining genes we sequenced the genomes of 15 female and 13 male Phoenix trees representing all 14 species. We identified male-specific sequences and extended them using phased single-molecule sequencing or BAC clones. We observed that only four genes contained sequences conserved in all analyzed Phoenix males. Most of these sequences showed similarity to a single genomic locus in the closely related monoecious oil palm. CYP703 and GPAT3, two single copy genes present in males and critical for male flower development in other monocots, were absent in females. A LOG-like gene appears translocated into the Y-linked region and is suggested to play a role in suppressing female flowers. Our data are consistent with a two-mutation model for the evolution of dioecy in Phoenix.


September 22, 2019

Exploring the limits and causes of plastid genome expansion in volvocine green algae.

Plastid genomes are not normally celebrated for being large. But researchers are steadily uncovering algal lineages with big and, in rare cases, enormous plastid DNAs (ptDNAs), such as volvocine green algae. Plastome sequencing of five different volvocine species has revealed some of the largest, most repeat-dense plastomes on record, including that of Volvox carteri (~525?kb). Volvocine algae have also been used as models for testing leading hypotheses on organelle genome evolution (e.g., the mutational hazard hypothesis), and it has been suggested that ptDNA inflation within this group might be a consequence of low mutation rates and/or the transition from a unicellular to multicellular existence. Here, we further our understanding of plastome size variation in the volvocine line by examining the ptDNA sequences of the colonial species Yamagishiella unicocca and Eudorina sp. NIES-3984 and the multicellular Volvox africanus, which are phylogenetically situated between species with known ptDNA sizes. Although V. africanus is closely related and similar in multicellular organization to V. carteri, its ptDNA was much less inflated than that of V. carteri. Synonymous- and noncoding-site nucleotide substitution rate analyses of these two Volvox ptDNAs suggest that there are drastically different plastid mutation rates operating in the coding versus intergenic regions, supporting the idea that error-prone DNA repair in repeat-rich intergenic spacers is contributing to genome expansion. Our results reinforce the idea that the volvocine line harbors extremes in plastome size but ultimately shed doubt on some of the previously proposed hypotheses for ptDNA inflation within the lineage.


September 22, 2019

Insights into the evolution of multicellularity from the sea lettuce genome.

We report here the 98.5 Mbp haploid genome (12,924 protein coding genes) of Ulva mutabilis, a ubiquitous and iconic representative of the Ulvophyceae or green seaweeds. Ulva’s rapid and abundant growth makes it a key contributor to coastal biogeochemical cycles; its role in marine sulfur cycles is particularly important because it produces high levels of dimethylsulfoniopropionate (DMSP), the main precursor of volatile dimethyl sulfide (DMS). Rapid growth makes Ulva attractive biomass feedstock but also increasingly a driver of nuisance “green tides.” Ulvophytes are key to understanding the evolution of multicellularity in the green lineage, and Ulva morphogenesis is dependent on bacterial signals, making it an important species with which to study cross-kingdom communication. Our sequenced genome informs these aspects of ulvophyte cell biology, physiology, and ecology. Gene family expansions associated with multicellularity are distinct from those of freshwater algae. Candidate genes, including some that arose following horizontal gene transfer from chromalveolates, are present for the transport and metabolism of DMSP. The Ulva genome offers, therefore, new opportunities to understand coastal and marine ecosystems and the fundamental evolution of the green lineage. Copyright © 2018 Elsevier Ltd. All rights reserved.


September 22, 2019

Ma orthologous genes in Prunus spp. shed light on a noteworthy NBS-LRR cluster conferring differential resistance to root-knot nematodes.

Root-knot nematodes (RKNs) are considerable polyphagous pests that severely challenge plants worldwide and especially perennials. The specific genetic resistance of plants mainly relies on the NBS-LRR genes that are pivotal factors for pathogens control. In Prunus spp., the Ma plum and RMja almond genes possess different spectra for resistance to RKNs. While previous works based on the Ma gene allowed to clone it and to decipher its peculiar TIR-NBS-LRR (TNL) structure, we only knew that the RMja gene mapped on the same chromosome as Ma. We carried out a high-resolution mapping using an almond segregating F2 progeny of 1448 seedlings from resistant (R) and susceptible (S) parental accessions, to locate precisely RMja on the peach genome, the reference sequence for Prunus species. We showed that the RMja gene maps in the Ma resistance cluster and that the Ma ortholog is the best candidate for RMja. This co-localization is a crucial step that opens the way to unravel the molecular determinants involved in the resistance to RKNs. Then we sequenced both almond parental NGS genomes and aligned them onto the RKN susceptible reference peach genome. We produced a BAC library of the R parental accession and, from two overlapping BAC clones, we obtained a 336-kb sequence encompassing the RMja candidate region. Thus, we could benefit from three Ma orthologous regions to investigate their sequence polymorphism, respectively, within plum (complete R spectrum), almond (incomplete R spectrum) and peach (null R spectrum). We showed that the Ma TNL cluster has evolved orthologs with a unique conserved structure comprised of five repeated post-LRR (PL) domains, which contain most polymorphism. In addition to support the Ma and RMja orthologous relationship, our results suggest that the polymorphism contained in the PL sequences might underlie differential resistance interactions with RKNs and an original immune mechanism in woody perennials. Besides, our study illustrates how PL exon duplications and losses shape TNL structure and give rise to atypical PL domain repeats of yet unknown role.


September 22, 2019

Bias in resistance gene prediction due to repeat masking

Several recently published Brassicaceae genome annotations show strong differences in resistance (R)-gene content. We believe that this is caused by different approaches to repeat masking. Here we show that some of the repeats stored in public databases used for repeat masking carry pieces of predicted R-gene-related domains, and demonstrate that at least some of the variance in R-gene content in recent genome annotations is caused by using these repeats for repeat masking. We also show that other classes of genes are less affected by this phenomenon, and estimate a false positive rate of R genes (0 to 4.6%) that are in reality transposons carrying the R-gene domains. These results may partially explain why there has been a decrease in published novel R genes in recent years, which has implications for plant breeding, especially in the face of pathogens changing as a response to climate change.


September 22, 2019

The opium poppy genome and morphinan production.

Morphinan-based painkillers are derived from opium poppy (Papaver somniferum L.). We report a draft of the opium poppy genome, with 2.72 gigabases assembled into 11 chromosomes with contig N50 and scaffold N50 of 1.77 and 204 megabases, respectively. Synteny analysis suggests a whole-genome duplication at ~7.8 million years ago and ancient segmental or whole-genome duplication(s) that occurred before the Papaveraceae-Ranunculaceae divergence 110 million years ago. Syntenic blocks representative of phthalideisoquinoline and morphinan components of a benzylisoquinoline alkaloid cluster of 15 genes provide insight into how this cluster evolved. Paralog analysis identified P450 and oxidoreductase genes that combined to form the STORR gene fusion essential for morphinan biosynthesis in opium poppy. Thus, gene duplication, rearrangement, and fusion events have led to evolution of specialized metabolic products in opium poppy. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.


September 22, 2019

Deletions linked to PROG1 gene participate in plant architecture domestication in Asian and African rice.

Improving the yield by modifying plant architecture was a key step during crop domestication. Here, we show that a 110-kb deletion on the short arm of chromosome 7 in Asian cultivated rice (Oryza sativa), which is closely linked to the previously identified PROSTRATE GROWTH 1 (PROG1) gene, harbors a tandem repeat of seven zinc-finger genes. Three of these genes regulate the plant architecture, suggesting that the deletion also promoted the critical transition from the prostrate growth and low yield of wild rice (O. rufipogon) to the erect growth and high yield of Asian cultivated rice. We refer to this locus as RICE PLANT ARCHITECTURE DOMESTICATION (RPAD). Further, a similar but independent 113-kb deletion is detected at the RPAD locus in African cultivated rice. These results indicate that the deletions, eliminating a tandem repeat of zinc-finger genes, may have been involved in the parallel domestication of plant architecture in Asian and African rice.


September 22, 2019

Assembling the genome of the African wild rice Oryza longistaminata by exploiting synteny in closely related Oryza species.

The African wild rice species Oryza longistaminata has several beneficial traits compared to cultivated rice species, such as resistance to biotic stresses, clonal propagation via rhizomes, and increased biomass production. To facilitate breeding efforts and functional genomics studies, we de-novo assembled a high-quality, haploid-phased genome. Here, we present our assembly, with a total length of 351?Mb, of which 92.2% was anchored onto 12 chromosomes. We detected 34,389 genes and 38.1% of the genome consisted of repetitive content. We validated our assembly by a comparative linkage analysis and by examining well-characterized gene families. This genome assembly will be a useful resource to exploit beneficial alleles found in O. longistaminata. Our results also show that it is possible to generate a high-quality, functionally complete rice genome assembly from moderate SMRT read coverage by exploiting synteny in a closely related Oryza species.


September 22, 2019

Genome-wide researches and applications on Dendrobium.

This review summarizes current knowledge of chromosome characterization, genetic mapping, genomic sequencing, quality formation, floral transition, propagation, and identification in Dendrobium. The widely distributed Dendrobium has been studied for a long history, due to its important economic values in both medicine and ornamental. In recent years, some species of Dendrobium and other orchids had been reported on genomic sequences, using the next-generation sequencing technology. And the chloroplast genomes of many Dendrobium species were also revealed. The chromosomes of most Dendrobium species belong to mini-chromosomes, and showed 2n?=?38. Only a few of genetic studies were reported in Dendrobium. After revealing of genomic sequences, the techniques of transcriptomics, proteomics and metabolomics could be employed on Dendrobium easily. Some other molecular biological techniques, such as gene cloning, gene editing, genetic transformation and molecular marker developing, had also been applied on the basic research of Dendrobium, successively. As medicinal plants, insights into the biosynthesis of some medicinal components were the most important. As ornamental plants, regulation of flower related characteristics was the most important. More, knowledge of growth and development, environmental interaction, evolutionary analysis, breeding of new cultivars, propagation, and identification of species and herbs were also required for commercial usage. All of these studies were improved using genomic sequences and related technologies. To answer some key scientific issues in Dendrobium, quality formation, flowering, self-incompatibility and seed germination would be the focus of future research. And genome related technologies and studies would be helpful.


September 22, 2019

Haematococcus lacustris: the makings of a giant-sized chloroplast genome.

Recent work on the chlamydomonadalean green alga Haematococcus lacustris uncovered the largest plastid genome on record: a whopping 1.35 Mb with >90 % non-coding DNA. A 500-word description of this genome was published in the journal Genome Announcements. But such a short report for such a large genome leaves many unanswered questions. For instance, the H. lacustris plastome was found to encode only 12 tRNAs, less than half that of a typical plastome, it appears to have a non-standard genetic code, and is one of only a few known plastid DNAs (ptDNAs), out of thousands of available sequences, not biased in adenine and thymine. Here, I take a closer look at the H. lacustris plastome, comparing its size, content and architecture to other large organelle DNAs, including those from close relatives in the Chlamydomonadales. I show that the H. lacustris plastid coding repertoire is not as unusual as initially thought, representing a standard set of rRNAs, tRNAs and protein-coding genes, where the canonical stop codon UGA appears to sometimes signify tryptophan. The intergenic spacers are dense with repeats, and it is within these regions where potential answers to the source of such extreme genomic expansion lie. By comparing ptDNA sequences of two closely related strains of H. lacustris, I argue that the mutation rate of the non-coding DNA is high and contributing to plastome inflation. Finally, by exploring publicly available RNA-sequencing data, I find that most of the intergenic ptDNA is transcriptionally active.


September 22, 2019

The complete chloroplast genome sequence of Coix lacryma-jobi L.(Poaceae), a cereal and medicinal crop

Coix lacryma-jobi is a cereal and medicinal crop belonging to the Poaceae family. This study characterized complete chloroplast genome sequence of a Korean cultivar Johyun of C. lacryma-jobi var. ma-yuen through the de novo hybrid assembly with Illumina and PacBio genomic reads. The chloroplast genome is 140,863?bp long and composed of large single copy (82,827?bp), small single copy (12,522?bp), and a pair of inverted repeats (each 22,757?bp). A total of 123 genes including 87 protein-coding genes, 32 tRNA genes, and four rRNA genes were predicted in the genome. Phylogenetic analysis confirmed a close relationship of C. lacryma-jobi with species in the Panicoideae subfamily of the Poaceae family.


September 22, 2019

Recovery of novel association loci in Arabidopsis thaliana and Drosophila melanogaster through leveraging INDELs association and integrated burden test.

Short insertions, deletions (INDELs) and larger structural variants have been increasingly employed in genetic association studies, but few improvements over SNP-based association have been reported. In order to understand why this might be the case, we analysed two publicly available datasets and observed that 63% of INDELs called in A. thaliana and 64% in D. melanogaster populations are misrepresented as multiple alleles with different functional annotations, i.e. where the same underlying variant is represented by inconsistent alignments leading to different variant calls. To address this issue, we have developed the software Irisas to reclassify and re-annotate these variants, which we then used for single-locus tests of association. We also integrated them to predict the functional impact of SNPs, INDELs, and structural variants for burden testing. Using both approaches, we re-analysed the genetic architecture of complex traits in A. thaliana and D. melanogaster. Heritability analysis using SNPs alone explained on average 27% and 19% of phenotypic variance for A. thaliana and D. melanogaster respectively. Our method explained an additional 11% and 3%, respectively. We also identified novel trait loci that previous SNP-based association studies failed to map, and which contain established candidate genes. Our study shows the value of the association test with INDELs and integrating multiple types of variants in association studies in plants and animals.


September 22, 2019

A complete Cannabis chromosome assembly and adaptive admixture for elevated cannabidiol (CBD) content

Cannabis has been cultivated for millennia with distinct cultivars providing either fiber and grain or tetrahydrocannabinol. Recent demand for cannabidiol rather than tetrahydrocannabinol has favored the breeding of admixed cultivars with extremely high cannabidiol content. Despite several draft Cannabis genomes, the genomic structure of cannabinoid synthase loci has remained elusive. A genetic map derived from a tetrahydrocannabinol/cannabidiol segregating population and a complete chromosome assembly from a high-cannabidiol cultivar together resolve the linkage of cannabidiolic and tetrahydrocannabinolic acid synthase gene clusters which are associated with transposable elements. High-cannabidiol cultivars appear to have been generated by integrating hemp-type cannabidiolic acid synthase gene clusters into a background of marijuana-type cannabis. Quantitative trait locus mapping suggests that overall drug potency, however, is associated with other genomic regions needing additional study.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.