Menu
September 22, 2019  |  

Transcriptome profiling in the spathe of Anthurium andraeanum ‘Albama’ and its anthocyanin-loss mutant ‘Xueyu’.

Anthurium andraeanum is a popular tropical ornamental plant. Its spathes are brilliantly coloured due to variable anthocyanin contents. To examine the mechanisms that control anthocyanin biosynthesis, we sequenced the spathe transcriptomes of ‘Albama’, a red-spathed cultivar of A. andraeanum, and ‘Xueyu’, its anthocyanin-loss mutant. Both long reads and short reads were sequenced. Long read sequencing produced 805,869 raw reads, resulting in 83,073 high-quality transcripts. Short read sequencing produced 347.79?M reads, and the subsequent assembly resulted in 111,674 unigenes. High-quality transcripts and unigenes were quantified using the short reads, and differential expression analysis was performed between ‘Albama’ and ‘Xueyu’. Obtaining high-quality, full-length transcripts enabled the detection of long transcript structures and transcript variants. These data provide a foundation to elucidate the mechanisms regulating the biosynthesis of anthocyanin in A. andraeanum.


September 22, 2019  |  

Membrane attack complex-associated molecules from redlip mullet (Liza haematocheila): Molecular characterization and transcriptional evidence of C6, C7, C8ß, and C9 in innate immunity.

The redlip mullet (Liza haematocheila) is one of the most economically important fish in Korea and other East Asian countries; it is susceptible to infections by pathogens such as Lactococcus garvieae, Argulus spp., Trichodina spp., and Vibrio spp. Learning about the mechanisms of the complement system of the innate immunity of redlip mullet is important for efforts towards eradicating pathogens. Here, we report a comprehensive study of the terminal complement complex (TCC) components that form the membrane attack complex (MAC) through in-silico characterization and comparative spatial and temporal expression profiling. Five conserved domains (TSP1, LDLa, MACPF, CCP, and FIMAC) were detected in the TCC components, but the CCP and FIMAC domains were absent in MuC8ß and MuC9. Expression analysis of four TCC genes from healthy redlip mullets showed the highest expression levels in the liver, whereas limited expression was observed in other tissues; immune-induced expression in the head kidney and spleen revealed significant responses against Lactococcus garvieae and poly I:C injection, suggesting their involvement in MAC formation in response to harmful pathogenic infections. Furthermore, the response to poly I:C may suggest the role of TCC components in the breakdown of the membrane of enveloped viruses. These findings may help to elucidate the mechanisms behind the complement system of the teleosts innate immunity. Copyright © 2018 Elsevier Ltd. All rights reserved.


September 22, 2019  |  

Leveraging multiple transcriptome assembly methods for improved gene structure annotation.

The performance of RNA sequencing (RNA-seq) aligners and assemblers varies greatly across different organisms and experiments, and often the optimal approach is not known beforehand.Here, we show that the accuracy of transcript reconstruction can be boosted by combining multiple methods, and we present a novel algorithm to integrate multiple RNA-seq assemblies into a coherent transcript annotation. Our algorithm can remove redundancies and select the best transcript models according to user-specified metrics, while solving common artifacts such as erroneous transcript chimerisms.We have implemented this method in an open-source Python3 and Cython program, Mikado, available on GitHub.


September 22, 2019  |  

A global survey of alternative splicing in allopolyploid cotton: landscape, complexity and regulation.

Alternative splicing (AS) is a crucial regulatory mechanism in eukaryotes, which acts by greatly increasing transcriptome diversity. The extent and complexity of AS has been revealed in model plants using high-throughput next-generation sequencing. However, this technique is less effective in accurately identifying transcript isoforms in polyploid species because of the high sequence similarity between coexisting subgenomes. Here we characterize AS in the polyploid species cotton. Using Pacific Biosciences single-molecule long-read isoform sequencing (Iso-Seq), we developed an integrated pipeline for Iso-Seq transcriptome data analysis (https://github.com/Nextomics/pipeline-for-isoseq). We identified 176 849 full-length transcript isoforms from 44 968 gene models and updated gene annotation. These data led us to identify 15 102 fibre-specific AS events and estimate that c. 51.4% of homoeologous genes produce divergent isoforms in each subgenome. We reveal that AS allows differential regulation of the same gene by miRNAs at the isoform level. We also show that nucleosome occupancy and DNA methylation play a role in defining exons at the chromatin level. This study provides new insights into the complexity and regulation of AS, and will enhance our understanding of AS in polyploid species. Our methodology for Iso-Seq data analysis will be a useful reference for the study of AS in other species.© 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.


September 22, 2019  |  

Transcriptional adaptations during long-term persistence of Staphylococcus aureus in the airways of a cystic fibrosis patient.

The lungs of Cystic fibrosis (CF) patients are often colonized and/or infected by Staphylococcus aureus for years, mostly by one predominant clone. For long-term survival in this environment, S. aureus needs to adapt during its interactions with host factors, antibiotics, and other pathogens. Here, we study long-term transcriptional as well as genomic adaptations of an isogenic pair of S. aureus isolates from a single patient using RNA sequencing (RNA-Seq) and whole genome sequencing (WGS). Mimicking in vivo conditions, we cultivated the S. aureus isolates using artificial sputum medium before harvesting RNA for subsequent analysis. We confirmed our RNA-Seq data using quantitative real-time (qRT)-PCR and additionally investigated intermediate isolates from the same patient representing in total 13.2 years of persistence in the CF airways. Comparative RNA-Seq analysis of the first and the last (“late”) isolate revealed significant differences in the late isolate after 13.2 years of persistence. Of the 2545 genes expressed in both isolates that were cultivated aerobically, 256 genes were up- and 161 were down-regulated with a minimum 2-fold change (2f). Focusing on 25 highly (=8f) up- (n=9) or down- (n=16) regulated genes, we identified several genes encoding for virulence factors involved in immune evasion, bacterial spread or secretion (e.g. spa, sak, and esxA). Moreover, these genes displayed similar expression trends under aerobic, microaerophilic and anaerobic conditions. Further qRT-PCR-experiments of highly up- or down-regulated genes within intermediate S. aureus isolates resulted in different gene expression patterns over the years. Using sequencing analysis of the differently expressed genes and their upstream regions in the late S. aureus isolate resulted in only few genomic alterations. Comparative transcriptomic analysis revealed adaptive changes affecting mainly genes involved in host-pathogen interaction. Although the underlying mechanisms were not known, our results suggest adaptive processes beyond genomic mutations triggered by local factors rather than by activation of global regulators. Copyright © 2014 The Authors. Published by Elsevier GmbH.. All rights reserved.


September 22, 2019  |  

Novel syntrophic populations dominate an ammonia-tolerant methanogenic microbiome.

Biogas reactors operating with protein-rich substrates have high methane potential and industrial value; however, they are highly susceptible to process failure because of the accumulation of ammonia. High ammonia levels cause a decline in acetate-utilizing methanogens and instead promote the conversion of acetate via a two-step mechanism involving syntrophic acetate oxidation (SAO) to H2 and CO2, followed by hydrogenotrophic methanogenesis. Despite the key role of syntrophic acetate-oxidizing bacteria (SAOB), only a few culturable representatives have been characterized. Here we show that the microbiome of a commercial, ammonia-tolerant biogas reactor harbors a deeply branched, uncultured phylotype (unFirm_1) accounting for approximately 5% of the 16S rRNA gene inventory and sharing 88% 16S rRNA gene identity with its closest characterized relative. Reconstructed genome and quantitative metaproteomic analyses imply unFirm_1’s metabolic dominance and SAO capabilities, whereby the key enzymes required for acetate oxidation are among the most highly detected in the reactor microbiome. While culturable SAOB were identified in genomic analyses of the reactor, their limited proteomic representation suggests that unFirm_1 plays an important role in channeling acetate toward methane. Notably, unFirm_1-like populations were found in other high-ammonia biogas installations, conjecturing a broader importance for this novel clade of SAOB in anaerobic fermentations. IMPORTANCE The microbial production of methane or “biogas” is an attractive renewable energy technology that can recycle organic waste into biofuel. Biogas reactors operating with protein-rich substrates such as household municipal or agricultural wastes have significant industrial and societal value; however, they are highly unstable and frequently collapse due to the accumulation of ammonia. We report the discovery of a novel uncultured phylotype (unFirm_1) that is highly detectable in metaproteomic data generated from an ammonia-tolerant commercial reactor. Importantly, unFirm_1 is proposed to perform a key metabolic step in biogas microbiomes, whereby it syntrophically oxidizes acetate to hydrogen and carbon dioxide, which methanogens then covert to methane. Only very few culturable syntrophic acetate-oxidizing bacteria have been described, and all were detected at low in situ levels compared to unFirm_1. Broader comparisons produced the hypothesis that unFirm_1 is a key mediator toward the successful long-term stable operation of biogas production using protein-rich substrates.


September 22, 2019  |  

Two phospholipid scramblase 1-related proteins (PLSCR1like-a & -b) from Liza haematocheila: Molecular and transcriptional features and expression analysis after immune stimulation.

Phospholipid scramblases (PLSCRs) are a family of transmembrane proteins known to be responsible for Ca2+-mediated bidirectional phospholipid translocation in the plasma membrane. Apart from the scrambling activity of PLSCRs, recent studies revealed their diverse other roles, including antiviral defense, tumorigenesis, protein-DNA interactions, apoptosis regulation, and cell activation. Nonetheless, the biological and transcriptional functions of PLSCRs in fish have not been discovered to date. Therefore, in this study, two new members related to the PLSCR1 family were identified in the red lip mullet (Liza haematocheila) as MuPLSCR1like-a and MuPLSCR1like-b, and their characteristics were studied at molecular and transcriptional levels. Sequence analysis revealed that MuPLSCR1like-a and MuPLSCR1like-b are composed of 245 and 228 amino acid residues (aa) with the predicted molecular weights of 27.82 and 25.74?kDa, respectively. A constructed phylogenetic tree showed that MuPLSCR1like-a and MuPLSCR1like-b are clustered together with other known PLSCR1 and -2 orthologues, thus pointing to the relatedness to both PLSCR1 and PLSCR2 families. Two-dimensional (2D) and 3D graphical representations illustrated the well-known 12-stranded ß-barrel structure of MuPLSCR1like-a and MuPLSCR1like-b with transmembrane orientation toward the phospholipid bilayer. In analysis of tissue-specific expression, the highest expression of MuPLSCR1like-a was observed in the intestine, whereas MuPLSCR1like-b was highly expressed in the brain, indicating isoform specificity. Of note, we found that the transcription of MuPLSCR1like-a and MuPLSCR1like-b was significantly upregulated when the fish were stimulated with poly(I:C), suggesting that such immune responses target viral infections. Overall, this study provides the first experimental insight into the characteristics and immune-system relevance of PLSCR1-related genes in red lip mullets. Copyright © 2018 Elsevier Ltd. All rights reserved.


September 22, 2019  |  

Global transcript structure resolution of high gene density genomes through multi-platform data integration.

Annotation of herpesvirus genomes has traditionally been undertaken through the detection of open reading frames and other genomic motifs, supplemented with sequencing of individual cDNAs. Second generation sequencing and high-density microarray studies have revealed vastly greater herpesvirus transcriptome complexity than is captured by existing annotation. The pervasive nature of overlapping transcription throughout herpesvirus genomes, however, poses substantial problems in resolving transcript structures using these methods alone. We present an approach that combines the unique attributes of Pacific Biosciences Iso-Seq long-read, Illumina short-read and deepCAGE (Cap Analysis of Gene Expression) sequencing to globally resolve polyadenylated isoform structures in replicating Epstein-Barr virus (EBV). Our method, Transcriptome Resolution through Integration of Multi-platform Data (TRIMD), identifies nearly 300 novel EBV transcripts, quadrupling the size of the annotated viral transcriptome. These findings illustrate an array of mechanisms through which EBV achieves functional diversity in its relatively small, compact genome including programmed alternative splicing (e.g. across the IR1 repeats), alternative promoter usage by LMP2 and other latency-associated transcripts, intergenic splicing at the BZLF2 locus, and antisense transcription and pervasive readthrough transcription throughout the genome.© The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.


September 22, 2019  |  

neoantigenR: An annotation based pipeline for tumor neoantigen identification from sequencing data

Studies indicate that more than 90% of human genes are alternatively spliced, suggesting the complexity of the transcriptome assembly and analysis. The splicing process is often disrupted, resulting in both functional and non-functional end-products (Sveen et al. 2016) in many cancers. Harnessing the immune system to fight against malignant cancers carrying aberrantly mutated or spliced products is becoming a promising approach to cancer therapy. Advances in immune checkpoint blockade have elicited adaptive immune responses with promising clinical responses to treatments against human malignancies (Tumor Neoantigens in Personalized Cancer Immunotherapy 2017). Emerging data suggest that recognition of patient-specific mutation-associated cancer antigens (i.e. from alternative splicing isoforms) may allow scientists to dissect the immune response in the activity of clinical immunotherapies (Schumacher and Schreiber 2015). The advent of high-throughput sequencing technology has provided a comprehensive view of both splicing aberrations and somatic mutations across a range of human malignancies, allowing for a deeper understanding of the interplay of various disease mechanisms. Meanwhile, studies show that the number of transcript isoforms reported to date may be limited by the short-read sequencing due to the inherit limitation of transcriptome reconstruction algorithms, whereas long-read sequencing is able to significantly improve the detection of alternative splicing variants since there is no need to assemble full-length transcripts from short reads. The analysis of these high-throughput long-read sequencing data may permit a systematic view of tumor specific peptide epitopes (also known as neoantigens) that could serve as targets for immunotherapy (Tumor Neoantigens in Personalized Cancer Immunotherapy 2017). Currently, there is no software pipeline available that can efficiently produce mutation-associated cancer antigens from raw high-throughput sequencing data on patient tumor DNA (The Problem with Neoantigen Prediction 2017). In addressing this issue, we introduce a R package that allows the discoveries of peptide epitope candidates, which are the tumor-specific peptide fragments containing potential functional neoantigens. These peptide epitopes consist of structure variants including insertion, deletions, alternative sequences, and peptides from nonsynonymous mutations. Analysis of these precursor candidates with widely used tools such as netMHC allows for the accurate in-silico prediction of neoantigens. The pipeline named neoantigeR is currently hosted in https://github.com/ICBI/neoantigeR.


September 22, 2019  |  

Improved performance of the PacBio SMRT technology for 16S rDNA sequencing.

Improved sequencing accuracy was obtained with 16S amplicons from environmental samples and a known pure culture when upgraded Pacific Biosciences (PacBio) hardware and enzymes were used for the single molecule, real-time (SMRT) sequencing platform. The new PacBio RS II system with P4/C2 chemistry, when used with previously constructed libraries (Mosher et al., 2013) surpassed the accuracy of Roche/454 pyrosequencing platform. With accurate read lengths of >1400 base pairs, the PacBio system opens up the possibility of identifying microorganisms to the species level in environmental samples. Copyright © 2014 Elsevier B.V. All rights reserved.


September 22, 2019  |  

Rapid infectious disease identification by next-generation DNA sequencing.

Currently, there is a critical need to rapidly identify infectious organisms in clinical samples. Next-Generation Sequencing (NGS) could surmount the deficiencies of culture-based methods; however, there are no standardized, automated programs to process NGS data. To address this deficiency, we developed the Rapid Infectious Disease Identification (RIDI™) system. The system requires minimal guidance, which reduces operator errors. The system is compatible with the three major NGS platforms. It automatically interfaces with the sequencing system, detects their data format, configures the analysis type, applies appropriate quality control, and analyzes the results. Sequence information is characterized using both the NCBI database and RIDI™ specific databases. RIDI™ was designed to identify high probability sequence matches and more divergent matches that could represent different or novel species. We challenged the system using defined American Type Culture Collection (ATCC) reference standards of 27 species, both individually and in varying combinations. The system was able to rapidly detect known organisms in <12h with multi-sample throughput. The system accurately identifies 99.5% of the DNA sequence reads at the genus-level and 75.3% at the species-level in reference standards. It has a limit of detection of 146cells/ml in simulated clinical samples, and is also able to identify the components of polymicrobial samples with 16.9% discrepancy at the genus-level and 31.2% at the species-level. Thus, the system's effectiveness may exceed current methods, especially in situations where culture methods could produce false negatives or where rapid results would influence patient outcomes. Copyright © 2016 Elsevier B.V. All rights reserved.


September 22, 2019  |  

Is there foul play in the leaf pocket? The metagenome of floating fern Azolla reveals endophytes that do not fix N2 but may denitrify.

Dinitrogen fixation by Nostoc azollae residing in specialized leaf pockets supports prolific growth of the floating fern Azolla filiculoides. To evaluate contributions by further microorganisms, the A. filiculoides microbiome and nitrogen metabolism in bacteria persistently associated with Azolla ferns were characterized. A metagenomic approach was taken complemented by detection of N2 O released and nitrogen isotope determinations of fern biomass. Ribosomal RNA genes in sequenced DNA of natural ferns, their enriched leaf pockets and water filtrate from the surrounding ditch established that bacteria of A. filiculoides differed entirely from surrounding water and revealed species of the order Rhizobiales. Analyses of seven cultivated Azolla species confirmed persistent association with Rhizobiales. Two distinct nearly full-length Rhizobiales genomes were identified in leaf-pocket-enriched samples from ditch grown A. filiculoides. Their annotation revealed genes for denitrification but not N2 -fixation. 15 N2 incorporation was active in ferns with N. azollae but not in ferns without. N2 O was not detectably released from surface-sterilized ferns with the Rhizobiales. N2 -fixing N. azollae, we conclude, dominated the microbiome of Azolla ferns. The persistent but less abundant heterotrophic Rhizobiales bacteria possibly contributed to lowering O2 levels in leaf pockets but did not release detectable amounts of the strong greenhouse gas N2 O.© 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.


September 22, 2019  |  

A near complete snapshot of the Zea mays seedling transcriptome revealed from ultra-deep sequencing.

RNA-sequencing (RNA-seq) enables in-depth exploration of transcriptomes, but typical sequencing depth often limits its comprehensiveness. In this study, we generated nearly 3 billion RNA-Seq reads, totaling 341 Gb of sequence, from a Zea mays seedling sample. At this depth, a near complete snapshot of the transcriptome was observed consisting of over 90% of the annotated transcripts, including lowly expressed transcription factors. A novel hybrid strategy combining de novo and reference-based assemblies yielded a transcriptome consisting of 126,708 transcripts with 88% of expressed known genes assembled to full-length. We improved current annotations by adding 4,842 previously unannotated transcript variants and many new features, including 212 maize transcripts, 201 genes, 10 genes with undocumented potential roles in seedlings as well as maize lineage specific gene fusion events. We demonstrated the power of deep sequencing for large transcriptome studies by generating a high quality transcriptome, which provides a rich resource for the research community.


September 22, 2019  |  

RNA sequencing (RNA-Seq) reveals extremely low levels of reticulocyte-derived globin gene transcripts in peripheral blood from horses (Equus caballus) and cattle (Bos taurus).

RNA-seq has emerged as an important technology for measuring gene expression in peripheral blood samples collected from humans and other vertebrate species. In particular, transcriptomics analyses of whole blood can be used to study immunobiology and develop novel biomarkers of infectious disease. However, an obstacle to these methods in many mammalian species is the presence of reticulocyte-derived globin mRNAs in large quantities, which can complicate RNA-seq library sequencing and impede detection of other mRNA transcripts. A range of supplementary procedures for targeted depletion of globin transcripts have, therefore, been developed to alleviate this problem. Here, we use comparative analyses of RNA-seq data sets generated from human, porcine, equine, and bovine peripheral blood to systematically assess the impact of globin mRNA on routine transcriptome profiling of whole blood in cattle and horses. The results of these analyses demonstrate that total RNA isolated from equine and bovine peripheral blood contains very low levels of globin mRNA transcripts, thereby negating the need for globin depletion and greatly simplifying blood-based transcriptomic studies in these two domestic species.


September 22, 2019  |  

Differential responses of total and active soil microbial communities to long-term experimental N deposition

Abstract The relationship between total and metabolically active soil microbial communities can provide insight into how these communities are impacted by environmental change, which may impact the flow of energy and cycling of nutrients in the future. For example, the anthropogenic release of biologically available N has dramatically increased over the last 150 years, which can alter the processes controlling C storage in terrestrial ecosystems. In a northern hardwood forest ecosystem located in Michigan, USA, nearly 20 years of experimentally increased atmospheric N deposition has reduced forest floor decay and increased soil C storage. A microbial mechanism underlies this response, as compositional changes in the soil microbial community have been concomitantly documented with these biogeochemical changes. Here, we co-extracted DNA and RNA from decaying leaf litter to determine if experimental atmospheric N deposition has lowered the diversity and altered the composition of the whole communities of bacteria and fungi (i.e., DNA-based) and well as its active members (i.e., RNA-based). In our experiment, experimental N deposition did not affect the composition, diversity, or richness of the total forest floor fungal community, but did lower the diversity (-8%), as well as altered the composition of the active fungal community. In contrast, neither the total nor active forest floor bacterial community was significantly affected by experimental N deposition. Our results suggest that future rates of atmospheric N deposition can fundamentally alter the organization of the saprotrophic soil fungal community, key mediators of C cycling in terrestrial environments.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.