Menu
September 22, 2019

A complete Cannabis chromosome assembly and adaptive admixture for elevated cannabidiol (CBD) content

Cannabis has been cultivated for millennia with distinct cultivars providing either fiber and grain or tetrahydrocannabinol. Recent demand for cannabidiol rather than tetrahydrocannabinol has favored the breeding of admixed cultivars with extremely high cannabidiol content. Despite several draft Cannabis genomes, the genomic structure of cannabinoid synthase loci has remained elusive. A genetic map derived from a tetrahydrocannabinol/cannabidiol segregating population and a complete chromosome assembly from a high-cannabidiol cultivar together resolve the linkage of cannabidiolic and tetrahydrocannabinolic acid synthase gene clusters which are associated with transposable elements. High-cannabidiol cultivars appear to have been generated by integrating hemp-type cannabidiolic acid synthase gene clusters into a background of marijuana-type cannabis. Quantitative trait locus mapping suggests that overall drug potency, however, is associated with other genomic regions needing additional study.


September 22, 2019

SKA: Split Kmer Analysis Toolkit for Bacterial Genomic Epidemiology

Genome sequencing is revolutionising infectious disease epidemiology, providing a huge step forward in sensitivity and specificity over more traditional molecular typing techniques. However, the complexity of genome data often means that its analysis and interpretation requires high-performance compute infrastructure and dedicated bioinformatics support. Furthermore, current methods have limitations that can differ between analyses and are often opaque to the user, and their reliance on multiple external dependencies makes reproducibility difficult. Here I introduce SKA, a toolkit for analysis of genome sequence data from closely-related, small, haploid genomes. SKA uses split kmers to rapidly identify variation between genome sequences, making it possible to analyse hundreds of genomes on a standard home computer. Tests on publicly available simulated and real-life data show that SKA is both faster and more efficient than the gold standard methods used today while retaining similar levels of accuracy for epidemiological purposes. SKA can take raw read data or genome assemblies as input and calculate pairwise distances, create single linkage clusters and align genomes to a reference genome or using a reference-free approach. SKA requires few decisions to be made by the user, which, along with its computational efficiency, allows genome analysis to become accessible to those with only basic bioinformatics training. The limitations of SKA are also far more transparent than for current approaches, and future improvements to mitigate these limitations are possible. Overall, SKA is a powerful addition to the armoury of the genomic epidemiologist. SKA source code is available from Github (https://github.com/simonrharris/SKA).


September 22, 2019

Bacterial virulence against an oceanic bloom-forming phytoplankter is mediated by algal DMSP

Emiliania huxleyi is a bloom-forming microalga that affects the global sulfur cycle by producing large amounts of dimethylsulfoniopropionate (DMSP) and its volatile metabolic product dimethyl sulfide. Top-down regulation of E. huxleyi blooms has been attributed to viruses and grazers; however, the possible involvement of algicidal bacteria in bloom demise has remained elusive. We demonstrate that a Roseobacter strain, Sulfitobacter D7, that we isolated from a North Atlantic E. huxleyi bloom, exhibited algicidal effects against E. huxleyi upon coculturing. Both the alga and the bacterium were found to co-occur during a natural E. huxleyi bloom, therefore establishing this host-pathogen system as an attractive, ecologically relevant model for studying algal-bacterial interactions in the oceans. During interaction, Sulfitobacter D7 consumed and metabolized algal DMSP to produce high amounts of methanethiol, an alternative product of DMSP catabolism. We revealed a unique strain-specific response, in which E. huxleyi strains that exuded higher amounts of DMSP were more susceptible to Sulfitobacter D7 infection. Intriguingly, exogenous application of DMSP enhanced bacterial virulence and induced susceptibility in an algal strain typically resistant to the bacterial pathogen. This enhanced virulence was highly specific to DMSP compared to addition of propionate and glycerol which had no effect on bacterial virulence. We propose a novel function for DMSP, in addition to its central role in mutualistic interactions among marine organisms, as a mediator of bacterial virulence that may regulate E. huxleyi blooms.


September 22, 2019

Targeted genotyping of variable number tandem repeats with adVNTR.

Whole-genome sequencing is increasingly used to identify Mendelian variants in clinical pipelines. These pipelines focus on single-nucleotide variants (SNVs) and also structural variants, while ignoring more complex repeat sequence variants. Here, we consider the problem of genotyping Variable Number Tandem Repeats (VNTRs), composed of inexact tandem duplications of short (6-100 bp) repeating units. VNTRs span 3% of the human genome, are frequently present in coding regions, and have been implicated in multiple Mendelian disorders. Although existing tools recognize VNTR carrying sequence, genotyping VNTRs (determining repeat unit count and sequence variation) from whole-genome sequencing reads remains challenging. We describe a method, adVNTR, that uses hidden Markov models to model each VNTR, count repeat units, and detect sequence variation. adVNTR models can be developed for short-read (Illumina) and single-molecule (Pacific Biosciences [PacBio]) whole-genome and whole-exome sequencing, and show good results on multiple simulated and real data sets.© 2018 Bakhtiari et al.; Published by Cold Spring Harbor Laboratory Press.


September 22, 2019

A continuous genome assembly of the corkwing wrasse (Symphodus melops).

The wrasses (Labridae) are one of the most successful and species-rich families of the Perciformes order of teleost fish. Its members display great morphological diversity, and occupy distinct trophic levels in coastal waters and coral reefs. The cleaning behaviour displayed by some wrasses, such as corkwing wrasse (Symphodus melops), is of particular interest for the salmon aquaculture industry to combat and control sea lice infestation as an alternative to chemicals and pharmaceuticals. There are still few genome assemblies available within this fish family for comparative and functional studies, despite the rapid increase in genome resources generated during the past years. Here, we present a highly continuous genome assembly of the corkwing wrasse using PacBio SMRT sequencing (x28.8) followed by error correction with paired-end Illumina data (x132.9). The present genome assembly consists of 5040 contigs (N50?=?461,652?bp) and a total size of 614 Mbp, of which 8.5% of the genome sequence encode known repeated elements. The genome assembly covers 94.21% of highly conserved genes across ray-finned fish species. We find evidence for increased copy numbers specific for corkwing wrasse possibly highlighting diversification and adaptive processes in gene families including N-linked glycosylation (ST8SIA6) and stress response kinases (HIPK1). By comparative analyses, we discover that de novo repeats, often not properly investigated during genome annotation, encode hundreds of immune-related genes. This new genomic resource, together with the ballan wrasse (Labrus bergylta), will allow for in-depth comparative genomics as well as population genetic analyses for the understudied wrasses. Copyright © 2018 Elsevier Inc. All rights reserved.


September 22, 2019

Constant conflict between Gypsy LTR retrotransposons and CHH methylation within a stress-adapted mangrove genome.

The evolutionary dynamics of the conflict between transposable elements (TEs) and their host genome remain elusive. This conflict will be intense in stress-adapted plants as stress can often reactivate TEs. Mangroves reduce TE load convergently in their adaptation to intertidal environments and thus provide a unique opportunity to address the host-TE conflict and its interaction with stress adaptation. Using the mangrove Rhizophora apiculata as a model, we investigated methylation and short interfering RNA (siRNA) targeting patterns in relation to the abundance and age of long terminal repeat (LTR) retrotransposons. We also examined the distance of LTR retrotransposons to genes, the impact on neighboring gene expression and population frequencies. We found differential accumulation amongst classes of LTR retrotransposons despite high overall methylation levels. This can be attributed to 24-nucleotide siRNA-mediated CHH methylation preferentially targeting Gypsy elements, particularly in their LTR regions. Old Gypsy elements possess unusually abundant siRNAs which show cross-mapping to young copies. Gypsy elements appear to be closer to genes and under stronger purifying selection than other classes. Our results suggest a continuous host-TE battle masked by the TE load reduction in R. apiculata. This conflict may enable mangroves, such as R. apiculata, to maintain genetic diversity and thus evolutionary potential during stress adaptation.© 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.


September 22, 2019

Combining probabilistic alignments with read pair information improves accuracy of split-alignments.

Split-alignments provide base-pair-resolution evidence of genomic rearrangements. In practice, they are found by first computing high-scoring local alignments, parts of which are then combined into a split-alignment. This approach is challenging when aligning a short read to a large and repetitive reference, as it tends to produce many spurious local alignments leading to ambiguities in identifying the correct split-alignment. This problem is further exacerbated by the fact that rearrangements tend to occur in repeat-rich regions.We propose a split-alignment technique that combats the issue of ambiguous alignments by combining information from probabilistic alignment with positional information from paired-end reads. We demonstrate that our method finds accurate split-alignments, and that this translates into improved performance of variant-calling tools that rely on split-alignments.An open-source implementation is freely available at: https://bitbucket.org/splitpairedend/last-split-pe.Supplementary data are available at Bioinformatics online.


September 22, 2019

Understanding explosive diversification through cichlid fish genomics.

Owing to their taxonomic, phenotypic, ecological and behavioural diversity and propensity for explosive diversification, the assemblages of cichlid fish in the East African Great Lakes Victoria, Malawi and Tanganyika are important role models in evolutionary biology. With the release of five reference genomes and many additional genomic resources, as well as the establishment of functional genomic tools, the cichlid system has fully entered the genomic era. The in-depth genomic exploration of the East African cichlid fauna – in combination with the examination of their ecology, morphology and behaviour – permits novel insights into the way organisms diversify.


September 22, 2019

How complete are “complete” genome assemblies?-An avian perspective.

The genomics revolution has led to the sequencing of a large variety of nonmodel organisms often referred to as “whole” or “complete” genome assemblies. But how complete are these, really? Here, we use birds as an example for nonmodel vertebrates and find that, although suitable in principle for genomic studies, the current standard of short-read assemblies misses a significant proportion of the expected genome size (7% to 42%; mean 20 ± 9%). In particular, regions with strongly deviating nucleotide composition (e.g., guanine-cytosine-[GC]-rich) and regions highly enriched in repetitive DNA (e.g., transposable elements and satellite DNA) are usually underrepresented in assemblies. However, long-read sequencing technologies successfully characterize many of these underrepresented GC-rich or repeat-rich regions in several bird genomes. For instance, only ~2% of the expected total base pairs are missing in the last chicken reference (galGal5). These assemblies still contain thousands of gaps (i.e., fragmented sequences) because some chromosomal structures (e.g., centromeres) likely contain arrays of repetitive DNA that are too long to bridge with currently available technologies. We discuss how to minimize the number of assembly gaps by combining the latest available technologies with complementary strengths. At last, we emphasize the importance of knowing the location, size and potential content of assembly gaps when making population genetic inferences about adjacent genomic regions.© 2018 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.


September 22, 2019

Computational tools to unmask transposable elements.

A substantial proportion of the genome of many species is derived from transposable elements (TEs). Moreover, through various self-copying mechanisms, TEs continue to proliferate in the genomes of most species. TEs have contributed numerous regulatory, transcript and protein innovations and have also been linked to disease. However, notwithstanding their demonstrated impact, many genomic studies still exclude them because their repetitive nature results in various analytical complexities. Fortunately, a growing array of methods and software tools are being developed to cater for them. This Review presents a summary of computational resources for TEs and highlights some of the challenges and remaining gaps to perform comprehensive genomic analyses that do not simply ‘mask’ repeats.


September 22, 2019

Genomic characterization reveals significant divergence within Chlorella sorokiniana (Chlorellales, Trebouxiophyceae)

Selection of highly productive algal strains is crucial for establishing economically viable biomass and biopro- duct cultivation systems. Characterization of algal genomes, including understanding strain-specific differences in genome content and architecture is a critical step in this process. Using genomic analyses, we demonstrate significant differences between three strains of Chlorella sorokiniana (strain 1228, UTEX 1230, and DOE1412). We found that unique, strain-specific genes comprise a substantial proportion of each genome, and genomic regions with> 80% local nucleotide identity constitute <15% of each genome among the strains, indicating substantial strain specific evolution. Furthermore, cataloging of meiosis and other sex-related genes in C. sor- okiniana strains suggests strategic breeding could be utilized to improve biomass and bioproduct yields if a sexual cycle can be characterized. Finally, preliminary investigation of epigenetic machinery suggests the pre- sence of potentially unique transcriptional regulation in each strain. Our data demonstrate that these three C. sorokiniana strains represent significantly different genomic content. Based on these findings, we propose in- dividualized assessment of each strain for potential performance in cultivation systems.


September 22, 2019

TranSurVeyor: an improved database-free algorithm for finding non-reference transpositions in high-throughput sequencing data.

Transpositions transfer DNA segments between different loci within a genome; in particular, when a transposition is found in a sample but not in a reference genome, it is called a non-reference transposition. They are important structural variations that have clinical impact. Transpositions can be called by analyzing second generation high-throughput sequencing datasets. Current methods follow either a database-based or a database-free approach. Database-based methods require a database of transposable elements. Some of them have good specificity; however this approach cannot detect novel transpositions, and it requires a good database of transposable elements, which is not yet available for many species. Database-free methods perform de novo calling of transpositions, but their accuracy is low. We observe that this is due to the misalignment of the reads; since reads are short and the human genome has many repeats, false alignments create false positive predictions while missing alignments reduce the true positive rate. This paper proposes new techniques to improve database-free non-reference transposition calling: first, we propose a realignment strategy called one-end remapping that corrects the alignments of reads in interspersed repeats; second, we propose a SNV-aware filter that removes some incorrectly aligned reads. By combining these two techniques and other techniques like clustering and positive-to-negative ratio filter, our proposed transposition caller TranSurVeyor shows at least 3.1-fold improvement in terms of F1-score over existing database-free methods. More importantly, even though TranSurVeyor does not use databases of prior information, its performance is at least as good as existing database-based methods such as MELT, Mobster and Retroseq. We also illustrate that TranSurVeyor can discover transpositions that are not known in the current database.


September 22, 2019

The genomic architecture and molecular evolution of ant odorant receptors.

The massive expansions of odorant receptor (OR) genes in ant genomes are notable examples of rapid genome evolution and adaptive gene duplication. However, the molecular mechanisms leading to gene family expansion remain poorly understood, partly because available ant genomes are fragmentary. Here, we present a highly contiguous, chromosome-level assembly of the clonal raider ant genome, revealing the largest known OR repertoire in an insect. While most ant ORs originate via local tandem duplication, we also observe several cases of dispersed duplication followed by tandem duplication in the most rapidly evolving OR clades. We found that areas of unusually high transposable element density (TE islands) were depauperate in ORs in the clonal raider ant, and found no evidence for retrotransposition of ORs. However, OR loci were enriched for transposons relative to the genome as a whole, potentially facilitating tandem duplication by unequal crossing over. We also found that ant OR genes are highly AT-rich compared to other genes. In contrast, in flies, OR genes are dispersed and largely isolated within the genome, and we find that fly ORs are not AT-rich. The genomic architecture and composition of ant ORs thus show convergence with the unrelated vertebrate ORs rather than the related fly ORs. This might be related to the greater gene numbers and/or potential similarities in gene regulation between ants and vertebrates as compared to flies.© 2018 McKenzie and Kronauer; Published by Cold Spring Harbor Laboratory Press.


September 22, 2019

Genomic analysis of Picochlorum species reveals how microalgae may adapt to variable environments.

Understanding how microalgae adapt to rapidly changing environments is not only important to science but can help clarify the potential impact of climate change on the biology of primary producers. We sequenced and analyzed the nuclear genome of multiple Picochlorum isolates (Chlorophyta) to elucidate strategies of environmental adaptation. It was previously found that coordinated gene regulation is involved in adaptation to salinity stress, and here we show that gene gain and loss also play key roles in adaptation. We determined the extent of horizontal gene transfer (HGT) from prokaryotes and their role in the origin of novel functions in the Picochlorum clade. HGT is an ongoing and dynamic process in this algal clade with adaptation being driven by transfer, divergence, and loss. One HGT candidate that is differentially expressed under salinity stress is indolepyruvate decarboxylase that is involved in the production of a plant auxin that mediates bacteria-diatom symbiotic interactions. Large differences in levels of heterozygosity were found in diploid haplotypes among Picochlorum isolates. Biallelic divergence was pronounced in P. oklahomensis (salt plains environment) when compared with its closely related sister taxon Picochlorum SENEW3 (brackish water environment), suggesting a role of diverged alleles in response to environmental stress. Our results elucidate how microbial eukaryotes with limited gene inventories expand habitat range from mesophilic to halophilic through allelic diversity, and with minor but important contributions made by HGT. We also explore how the nature and quality of genome data may impact inference of nuclear ploidy.


September 22, 2019

Genomic evidence for asymmetric introgression by sexual selection in the common wall lizard.

Strongly selected characters can be transferred from one lineage to another with limited genetic exchange, resulting in asymmetric introgression and a mosaic genome in the receiving population. However, systems are rarely sufficiently well studied to link the pattern of introgression to its underlying process. Male common wall lizards in western Italy exhibit exaggeration of a suite of sexually selected characters that make them outcompete males from a distantly related lineage that lack these characters. This results in asymmetric hybridization and adaptive introgression of the suite of characters following secondary contact. We developed genomewide markers to infer the demographic history of gene flow between different genetic lineages, identify the spread of the sexually selected syndrome, and test the prediction that introgression should be asymmetric and heterogeneous across the genome. Our results show that secondary contact was accompanied by gene flow in both directions across most of the genome, but with approximately 3% of the genome showing highly asymmetric introgression in the predicted direction. Demographic simulations reveal that this asymmetric gene flow is more recent than the initial secondary contact, and the data suggest that the exaggerated male sexual characters originated within the Italian lineage and subsequently spread throughout this lineage before eventually reaching the contact zone. These results demonstrate that sexual selection can cause a suite of characters to spread throughout both closely and distantly related lineages with limited gene flow across the genome at large.© 2018 John Wiley & Sons Ltd.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.