X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:

Authors: Rajaby, Ramesh and Sung, Wing-Kin

Transpositions transfer DNA segments between different loci within a genome; in particular, when a transposition is found in a sample but not in a reference genome, it is called a non-reference transposition. They are important structural variations that have clinical impact. Transpositions can be called by analyzing second generation high-throughput sequencing datasets. Current methods follow either a database-based or a database-free approach. Database-based methods require a database of transposable elements. Some of them have good specificity; however this approach cannot detect novel transpositions, and it requires a good database of transposable elements, which is not yet available for many species. Database-free methods perform de novo calling of transpositions, but their accuracy is low. We observe that this is due to the misalignment of the reads; since reads are short and the human genome has many repeats, false alignments create false positive predictions while missing alignments reduce the true positive rate. This paper proposes new techniques to improve database-free non-reference transposition calling: first, we propose a realignment strategy called one-end remapping that corrects the alignments of reads in interspersed repeats; second, we propose a SNV-aware filter that removes some incorrectly aligned reads. By combining these two techniques and other techniques like clustering and positive-to-negative ratio filter, our proposed transposition caller TranSurVeyor shows at least 3.1-fold improvement in terms of F1-score over existing database-free methods. More importantly, even though TranSurVeyor does not use databases of prior information, its performance is at least as good as existing database-based methods such as MELT, Mobster and Retroseq. We also illustrate that TranSurVeyor can discover transpositions that are not known in the current database.

Journal: Nucleic acids research
DOI: 10.1093/nar/gky685
Year: 2018

Read Publication

 

Stay
Current

Visit our blog »