Menu
July 7, 2019

Vibrio natriegens as a fast-growing host for molecular biology.

A rapidly growing bacterial host would be desirable for a range of routine applications in molecular biology and biotechnology. The bacterium Vibrio natriegens has the fastest growth rate of any known organism, with a reported doubling time of <10 min. We report the development of genetic tools and methods to engineer V. natriegens and demonstrate the advantages of using these engineered strains in common biotech processes.


July 7, 2019

Complete genome sequence of Bacillus oceanisediminis 2691, a reservoir of heavy-metal resistance genes.

Ocean sediments are commonly subject to the pollution of various heavy metals. Intracellular heavy metal concentrations in marine microorganisms should be kept within allowable concentrations. Here, we report redundant heavy metal resistance related genes encoding heavy metal-sensing transcriptional regulators (i.e. cadC), heavy metal efflux pumps, and detoxifying enzymes in the complete genome sequence of Bacillus oceanisediminis 2691. By comparing CadC sequences of strain 2691 with those from other bacterial genomes, we demonstrated that each cadC gene located in the chromosome or plasmid of 2691 cells are similar to those of various near or distant microbes, which might shed light on evolutionary trajectories of redundant heavy metal resistance genes. In application aspects, these diverse heavy metal sensing genes can be harnessed as synthetic biological parts, modules, and devices for the development of heavy metal-specific biosensors. Heavy metal bioremediation technologies or platform cells can be also developed based on the marine genomic information of heavy metal resistance and/or detoxification genes in a bacterial isolate from ocean sediments. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019

Genomic insight into the host-endosymbiont relationship of Endozoicomonas montiporae CL-33(T) with its coral host.

The bacterial genus Endozoicomonas was commonly detected in healthy corals in many coral-associated bacteria studies in the past decade. Although, it is likely to be a core member of coral microbiota, little is known about its ecological roles. To decipher potential interactions between bacteria and their coral hosts, we sequenced and investigated the first culturable endozoicomonal bacterium from coral, the E. montiporae CL-33(T). Its genome had potential sign of ongoing genome erosion and gene exchange with its host. Testosterone degradation and type III secretion system are commonly present in Endozoicomonas and may have roles to recognize and deliver effectors to their hosts. Moreover, genes of eukaryotic ephrin ligand B2 are present in its genome; presumably, this bacterium could move into coral cells via endocytosis after binding to coral’s Eph receptors. In addition, 7,8-dihydro-8-oxoguanine triphosphatase and isocitrate lyase are possible type III secretion effectors that might help coral to prevent mitochondrial dysfunction and promote gluconeogenesis, especially under stress conditions. Based on all these findings, we inferred that E. montiporae was a facultative endosymbiont that can recognize, translocate, communicate and modulate its coral host.


July 7, 2019

Complete genome sequence of thermophilic Bacillus smithii type strain DSM 4216(T).

Bacillus smithii is a facultatively anaerobic, thermophilic bacterium able to use a variety of sugars that can be derived from lignocellulosic feedstocks. Being genetically accessible, it is a potential new host for biotechnological production of green chemicals from renewable resources. We determined the complete genomic sequence of the B. smithii type strain DSM 4216(T), which consists of a 3,368,778 bp chromosome (GenBank accession number CP012024.1) and a 12,514 bp plasmid (GenBank accession number CP012025.1), together encoding 3880 genes. Genome annotation via RAST was complemented by a protein domain analysis. Some unique features of B. smithii central metabolism in comparison to related organisms included the lack of a standard acetate production pathway with no apparent pyruvate formate lyase, phosphotransacetylase, and acetate kinase genes, while acetate was the second fermentation product.


July 7, 2019

Complete genome sequence of a Rhodococcus species isolated from the winter skate Leucoraja ocellata.

We report here a genome sequence for Rhodococcus sp. isolate UM008 isolated from the renal/interrenal tissue of the winter skate Leucoraja ocellata Genome sequence analysis suggests that Rhodococcus bacteria may act in a novel mutualistic relationship with their elasmobranch host, serving as biocatalysts in the steroidogenic pathway of 1a-hydroxycorticosterone. Copyright © 2016 Wiens et al.


July 7, 2019

Evidence for an opportunistic and endophytic lifestyle of the Bursaphelenchus xylophilus-associated bacteria Serratia marcescens PWN146 isolated from wilting Pinus pinaster.

Pine wilt disease (PWD) results from the interaction of three elements: the pathogenic nematode, Bursaphelenchus xylophilus; the insect-vector, Monochamus sp.; and the host tree, mostly Pinus species. Bacteria isolated from B. xylophilus may be a fourth element in this complex disease. However, the precise role of bacteria in this interaction is unclear as both plant-beneficial and as plant-pathogenic bacteria may be associated with PWD. Using whole genome sequencing and phenotypic characterization, we were able to investigate in more detail the genetic repertoire of Serratia marcescens PWN146, a bacterium associated with B. xylophilus. We show clear evidence that S. marcescens PWN146 is able to withstand and colonize the plant environment, without having any deleterious effects towards a susceptible host (Pinus thunbergii), B. xylophilus nor to the nematode model C. elegans. This bacterium is able to tolerate growth in presence of xenobiotic/organic compounds, and use phenylacetic acid as carbon source. Furthermore, we present a detailed list of S. marcescens PWN146 potentials to interfere with plant metabolism via hormonal pathways and/or nutritional acquisition, and to be competitive against other bacteria and/or fungi in terms of resource acquisition or production of antimicrobial compounds. Further investigation is required to understand the role of bacteria in PWD. We have now reinforced the theory that B. xylophilus-associated bacteria may have a plant origin.


July 7, 2019

Comparative genomics and transcriptomics of Pichia pastoris.

Pichia pastoris has emerged as an important alternative host for producing recombinant biopharmaceuticals, owing to its high cultivation density, low host cell protein burden, and the development of strains with humanized glycosylation. Despite its demonstrated utility, relatively little strain engineering has been performed to improve Pichia, due in part to the limited number and inconsistent frameworks of reported genomes and transcriptomes. Furthermore, the co-mingling of genomic, transcriptomic and fermentation data collected about Komagataella pastoris and Komagataella phaffii, the two strains co-branded as Pichia, has generated confusion about host performance for these genetically distinct species. Generation of comparative high-quality genomes and transcriptomes will enable meaningful comparisons between the organisms, and potentially inform distinct biotechnological utilies for each species.Here, we present a comprehensive and standardized comparative analysis of the genomic features of the three most commonly used strains comprising the tradename Pichia: K. pastoris wild-type, K. phaffii wild-type, and K. phaffii GS115. We used a combination of long-read (PacBio) and short-read (Illumina) sequencing technologies to achieve over 1000X coverage of each genome. Construction of individual genomes was then performed using as few as seven individual contigs to create gap-free assemblies. We found substantial syntenic rearrangements between the species and characterized a linear plasmid present in K. phaffii. Comparative analyses between K. phaffii genomes enabled the characterization of the mutational landscape of the GS115 strain. We identified and examined 35 non-synonomous coding mutations present in GS115, many of which are likely to impact strain performance. Additionally, we investigated transcriptomic profiles of gene expression for both species during cultivation on various carbon sources. We observed that the most highly transcribed genes in both organisms were consistently highly expressed in all three carbon sources examined. We also observed selective expression of certain genes in each carbon source, including many sequences not previously reported as promoters for expression of heterologous proteins in yeasts.Our studies establish a foundation for understanding critical relationships between genome structure, cultivation conditions and gene expression. The resources we report here will inform and facilitate rational, organism-wide strain engineering for improved utility as a host for protein production.


July 7, 2019

Complete Genome Sequence of Mycobacterium avium, Isolated from Commercial Domestic Pekin Ducks (Anas platyrhynchos domestica), Determined Using PacBio Single-Molecule Real-Time Technology

Mycobacterium avium is an important pathogenic bacterium in birds and has never, to our knowledge, reported to be isolated from domestic ducks. We present here the complete genome sequence of a virulent strain of Mycobacterium avium, isolated from domestic Pekin ducks for the first time, which was determined by PacBio single-molecule real-time technology. Copyright © 2016 Song et al.


July 7, 2019

Complete Genome Sequences of Four Enterohemolysin-Positive (ehxA) Enterocyte Effacement-Negative Shiga Toxin-Producing Escherichia coli Strains

Shiga toxin-producing Escherichia coli (STEC) strains are important foodborne pathogens associated with human disease. Most disease-associated STEC strains carry the locus of enterocyte effacement (LEE); however, regularly LEE-negative STEC strains are recovered from ill patients. Few reference sequences are available for these isolate types. Here, we report here the complete genome sequences for four LEE-negative STEC strains. Copyright © 2016 Lorenz et al.


July 7, 2019

Draft genome sequence of Mycobacterium rufum JS14(T), a polycyclic-aromatic-hydrocarbon-degrading bacterium from petroleum-contaminated soil in Hawaii.

Mycobacterium rufum JS14(T) (=ATCC BAA-1377(T), CIP 109273(T), JCM 16372(T), DSM 45406(T)), a type strain of the species Mycobacterium rufum sp. . belonging to the family Mycobacteriaceae, was isolated from polycyclic aromatic hydrocarbon (PAH)-contaminated soil in Hilo (HI, USA) because it harbors the capability of degrading PAH. Here, we describe the first genome sequence of strain JS14(T), with brief phenotypic characteristics. The genome is composed of 6,176,413 bp with 69.25 % G?+?C content and contains 5810 protein-coding genes with 54 RNA genes. The genome information on M. rufum JS14(T) will provide a better understanding of the complexity of bacterial catabolic pathways for degradation of specific chemicals.


July 7, 2019

High quality draft genome sequence of the type strain of Pseudomonas lutea OK2(T), a phosphate-solubilizing rhizospheric bacterium.

Pseudomonas lutea OK2(T) (=LMG 21974(T), CECT 5822(T)) is the type strain of the species and was isolated from the rhizosphere of grass growing in Spain in 2003 based on its phosphate-solubilizing capacity. In order to identify the functional significance of phosphate solubilization in Pseudomonas Plant growth promoting rhizobacteria, we describe here the phenotypic characteristics of strain OK2(T) along with its high-quality draft genome sequence, its annotation, and analysis. The genome is comprised of 5,647,497 bp with 60.15 % G?+?C content. The sequence includes 4,846 protein-coding genes and 95 RNA genes.


July 7, 2019

Isolation and genomic characterization of ‘Desulfuromonas soudanensis WTL’, a metal- and electrode-respiring bacterium from anoxic deep subsurface brine.

Reaching a depth of 713 m below the surface, the Soudan Underground Iron Mine (Soudan, MN, USA) transects a massive Archaean (2.7 Ga) banded iron formation, providing a remarkably accessible window into the terrestrial deep biosphere. Despite organic carbon limitation, metal-reducing microbial communities are present in potentially ancient anoxic brines continuously emanating from exploratory boreholes on Level 27. Using graphite electrodes deposited in situ as bait, we electrochemically enriched and isolated a novel halophilic iron-reducing Deltaproteobacterium, ‘Desulfuromonas soudanensis’ strain WTL, from an acetate-fed three-electrode bioreactor poised at +0.24 V (vs. standard hydrogen electrode). Cyclic voltammetry revealed that ‘D. soudanensis’ releases electrons at redox potentials approximately 100 mV more positive than the model freshwater surface isolate Geobacter sulfurreducens, suggesting that its extracellular respiration is tuned for higher potential electron acceptors. ‘D. soudanensis’ contains a 3,958,620-bp circular genome, assembled to completion using single-molecule real-time (SMRT) sequencing reads, which encodes a complete TCA cycle, 38 putative multiheme c-type cytochromes, one of which contains 69 heme-binding motifs, and a LuxI/LuxR quorum sensing cassette that produces an unidentified N-acyl homoserine lactone. Another cytochrome is predicted to lie within a putative prophage, suggesting that horizontal gene transfer plays a role in respiratory flexibility among metal reducers. Isolation of ‘D. soudanensis’ underscores the utility of electrode-based approaches for enriching rare metal reducers from a wide range of habitats.


July 7, 2019

Genome sequence and analysis of Peptoclostridium difficile strain ZJCDC-S82.

Peptoclostridium difficile (Clostridium difficile) is the major pathogen associated with infectious diarrhea in humans. Concomitant with the increased incidence of C. difficile infection worldwide, there is an increasing concern regarding this infection type. This study reports a draft assembly and detailed sequence analysis of C. difficile strain ZJCDC-S82. The de novo assembled genome was 4.19 Mb in size, which includes 4,013 protein-coding genes, 41 rRNA genes, and 84 tRNA genes. Along with the nuclear genome, we also assembled sequencing information for a single plasmid consisting of 11,930 nucleotides. Comparative genomic analysis of C. difficile ZJCDC-S82 and two other previously published strains, such as M120 and CD630, showed extensive similarity. Phylogenetic analysis revealed that genetic diversity among C. difficile strains was not influenced by geographic location. Evolutionary analysis suggested that four genes encoding surface proteins exhibited positive selection in C. difficile ZJCDC-S82. Codon usage analysis indicated that C. difficile ZJCDC-S82 had high codon usage bias toward A/U-ended codons. Furthermore, codon usage patterns in C. difficile ZJCDC-S82 were predominantly affected by mutation pressure. Our results provide detailed information pertaining to the C. difficile genome associated with a strain from mainland China. This analysis will facilitate the understanding of genomic diversity and evolution of C. difficile strains in this region.


July 7, 2019

The Lysobacter capsici AZ78 genome has a gene pool enabling it to interact successfully with phytopathogenic microorganisms and environmental factors.

Lysobacter capsici AZ78 has considerable potential for biocontrol of phytopathogenic microorganisms. However, lack of information about genetic cues regarding its biological characteristics may slow down its exploitation as a biofungicide. In order to obtain a comprehensive overview of genetic features, the L. capsici AZ78 genome was sequenced, annotated and compared with the phylogenetically related pathogens Stenotrophomonas malthophilia K729a and Xanthomonas campestris pv. campestris ATCC 33913. Whole genome comparison, supported by functional analysis, indicated that L. capsici AZ78 has a larger number of genes responsible for interaction with phytopathogens and environmental stress than S. malthophilia K729a and X. c. pv. campestris ATCC 33913. Genes involved in the production of antibiotics, lytic enzymes and siderophores were specific for L. capsici AZ78, as well as genes involved in resistance to antibiotics, environmental stressors, fungicides and heavy metals. The L. capsici AZ78 genome did not encompass genes involved in infection of humans and plants included in the S. malthophilia K729a and X. c. pv. campestris ATCC 33913 genomes, respectively. The L. capsici AZ78 genome provides a genetic framework for detailed analysis of other L. capsici members and the development of novel biofungicides based on this bacterial strain.


July 7, 2019

The Ditylenchus destructor genome provides new insights into the evolution of plant parasitic nematodes.

Plant-parasitic nematodes were found in 4 of the 12 clades of phylum Nematoda. These nematodes in different clades may have originated independently from their free-living fungivorous ancestors. However, the exact evolutionary process of these parasites is unclear. Here, we sequenced the genome sequence of a migratory plant nematode, Ditylenchus destructor We performed comparative genomics among the free-living nematode, Caenorhabditis elegans and all the plant nematodes with genome sequences available. We found that, compared with C. elegans, the core developmental control processes underwent heavy reduction, though most signal transduction pathways were conserved. We also found D. destructor contained more homologies of the key genes in the above processes than the other plant nematodes. We suggest that Ditylenchus spp. may be an intermediate evolutionary history stage from free-living nematodes that feed on fungi to obligate plant-parasitic nematodes. Based on the facts that D. destructor can feed on fungi and has a relatively short life cycle, and that it has similar features to both C. elegans and sedentary plant-parasitic nematodes from clade 12, we propose it as a new model to study the biology, biocontrol of plant nematodes and the interaction between nematodes and plants.© 2016 The Author(s).


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.