Menu
July 7, 2019

Evolution and comparative genomics of pAQU-like conjugative plasmids in Vibrio species.

To investigate a set of MDR conjugative plasmids found in Vibrio species and characterize the underlying evolution process.pAQU-type plasmids from Vibrio species were sequenced using both Illumina and PacBio platforms. Bioinformatics tools were utilized to analyse the typical MDR regions and core genes in the plasmids.The nine pAQU-type plasmids ranged from ~160 to 206?kb in size and were found to harbour as many as 111 core genes encoding conjugative, replication and maintenance functions. Eight plasmids were found to carry a typical MDR region, which contained various accessory and resistance genes, including ISCR1-blaPER-1-bearing complex class 1 integrons, ISCR2-floR, ISCR2-tet(D)-tetR-ISCR2, qnrVC6, a Tn10-like structure and others associated with mobile elements. Comparison between a plasmid without resistance genes and different MDR plasmids showed that integration of different mobile elements, such as IS26, ISCR1, ISCR2, IS10 and IS6100, into the plasmid backbone was the key mechanism by which foreign resistance genes were acquired during the evolution process.This study identified pAQU-type plasmids as emerging MDR conjugative plasmids among important pathogens from different origins in Asia. These findings suggest that aquatic bacteria constitute a major reservoir of resistance genes, which may be transmissible to other human pathogens during food production and processing.© The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.


July 7, 2019

IncFII conjugative plasmid-mediated transmission of blaNDM-1 elements among animal-borne Escherichia coli strains.

This study aims to investigate the prevalence and transmission dynamics of the blaNDM-1 gene in animal Escherichia coli strains. Two IncFII blaNDM-1-encoding plasmids with only minor structural variation in the MDR region, pHNEC46-NDM and pHNEC55-NDM, were found to be responsible for the transmission of blaNDM-1 in these strains. The blaNDM-1 gene can be incorporated into plasmids and stably inherited in animal-borne E. coli strains that can be maintained in animal gut microflora even without carbapenem selection pressure. Copyright © 2016 American Society for Microbiology.


July 7, 2019

Genetic and functional characterization of blaCTX-M-199, a novel tazobactam and sulbactam resistance-encoding gene located in a conjugative mcr-1-bearing IncI2 plasmid.

The study reported the genetic and functional characterization of a novel CTX-M-199 ß-lactamase, which was encoded by a blaCTX-M-64 variant gene found in a conjugative mcr-1-bearing IncI2 plasmid and exhibited resistance to ß-lactamase inhibitors, tazobactam and sulbactam. Copyright © 2017 American Society for Microbiology.


July 7, 2019

Complete genome sequences of two Salmonella enterica subsp. enterica serovar Enteritidis strains isolated from egg products in the United States.

Egg-associated salmonellosis is an important public health problem in many countries. Here, we report the genome sequences, including plasmids, of two strains of Salmonella enterica subsp. enterica serovar Enteritidis isolated from egg products in 2012 and 2013 in the United States. This will provide more information and insight into the research about egg-associated salmonellosis. Copyright © 2017 Hu et al.


July 7, 2019

2015 epidemic of severe Streptococcus agalactiae sequence type 283 infections in Singapore associated with the consumption of raw freshwater fish: a detailed analysis of clinical, epidemiological, and bacterial sequencing data.

Streptococcus agalactiae (group B Streptococcus [GBS]) has not been described as a foodborne pathogen. However, in 2015, a large outbreak of severe invasive sequence type (ST) 283 GBS infections in adults epidemiologically linked to the consumption of raw freshwater fish occurred in Singapore. We attempted to determine the scale of the outbreak, define the clinical spectrum of disease, and link the outbreak to contaminated fish.Time-series analysis was performed on microbiology laboratory data. Food handlers and fishmongers were screened for enteric carriage of GBS. A retrospective cohort study was conducted to assess differences in demographic and clinical characteristics of patients with invasive ST283 and non-ST283 infections. Whole-genome sequencing was performed on human and fish ST283 isolates from Singapore, Thailand, and Hong Kong.The outbreak was estimated to have started in late January 2015. Within the study cohort of 408 patients, ST283 accounted for 35.8% of cases. Patients with ST283 infection were younger and had fewer comorbidities but were more likely to develop meningoencephalitis, septic arthritis, and spinal infection. Of 82 food handlers and fishmongers screened, none carried ST283. Culture of 43 fish samples yielded 13 ST283-positive samples. Phylogenomic analysis of 161 ST283 isolates from humans and fish revealed they formed a tight clade distinguished by 93 single-nucleotide polymorphisms.ST283 is a zoonotic GBS clone associated with farmed freshwater fish, capable of causing severe disease in humans. It caused a large foodborne outbreak in Singapore and poses both a regional and potentially more widespread threat.


July 7, 2019

Genomic characterization of a large plasmid containing a bla NDM-1 gene carried on Salmonella enterica serovar Indiana C629 isolate from China.

The bla NDM-1 gene in Salmonella species is mostly reported in clinical cases, but is rarely isolated from red and white meat in China.A Salmonella Indiana (S. Indiana) isolate was cultured from a chicken carcass procured from a slaughterhouse in China. Antimicrobial susceptibility was tested against a panel of agents. Whole-genome sequencing of the isolate was carried out and data was analyzed.A large plasmid, denoted as plasmid pC629 (210,106 bp), containing a composite cassette, consisting of IS26-bla NDM-1-ble MBL -?trpF-tat-cutA-ISCR1-sul1-qacE?1-aadA2-dfrA12-intI1-IS26 was identified. The latter locus was physically linked with bla OXA-1, bla CTX-M-65, bla TEM-1-encoding genes. A mercury resistance operon merACDEPTR was also identified; it was flanked on the proximal side, among IS26 element and the distally located on the bla NDM-1 gene. Plasmid pC629 also contained 21 other antimicrobial resistance-encoding genes, such as aac(6′)-Ib-cr, aac(3)-VI, aadA5, aph(4)-Ia, arr-3, blmS, brp, catB3, dfrA17, floR, fosA, mph(A), mphR, mrx, nimC/nimA, oqxA, oqxB, oqxR, rmtB, sul1, sul2. Two virulence genes were also identified on plasmid pC629.To the best of our knowledge, this is the first report of bla NDM-1 gene being identified from a plasmid in a S. Indiana isolate cultured from chicken carcass in China.


July 7, 2019

Completed genome sequences of Borrelia burgdorferi sensu stricto B31(NRZ) and closely related patient isolates from Europe.

Borrelia burgdorferi sensu stricto is a causative agent of human Lyme borreliosis in the United States and Europe. We report here the completed genome sequences of strain B31 isolated from a tick in the United States and two closely related strains from Europe, PAli and PAbe, which were isolated from patients with erythema migrans and neuroborreliosis, respectively. Copyright © 2017 Margos et al.


July 7, 2019

First report of Klebsiella oxytoca strain simultaneously producing NDM-1, IMP-4 and KPC-2 carbapenemases.

The nucleotide sequences of five plasmids from one Klebsiella oxytoca isolate were determined using the PacBio RS II system. Plasmid analysis revealed that blaNDM-1 was carried on an IncX3 plasmid. The blaIMP-4 and blaKPC-2 genes were located on IncN and IncP-6 plasmids, respectively. Comparative sequence analysis highlighted the successful spread of carbapenemase-harboring plasmids among different enterobacterial species. We report for the first time, to our knowledge, coproducing NDM-1, KPC-2, and IMP-4 carbapenemases on a K. oxytoca isolate. Copyright © 2017 American Society for Microbiology.


July 7, 2019

Complete genome sequence of Leuconostoc suionicum DSM 20241(T) provides insights into its functional and metabolic features.

The genome of Leuconostoc suionicum DSM 20241(T) (=ATCC 9135(T) = LMG 8159(T) = NCIMB 6992(T)) was completely sequenced and its fermentative metabolic pathways were reconstructed to investigate the fermentative properties and metabolites of strain DSM 20241(T) during fermentation. The genome of L. suionicum DSM 20241(T) consists of a circular chromosome (2026.8 Kb) and a circular plasmid (21.9 Kb) with 37.58% G + C content, encoding 997 proteins, 12 rRNAs, and 72 tRNAs. Analysis of the metabolic pathways of L. suionicum DSM 20241(T) revealed that strain DSM 20241(T) performs heterolactic acid fermentation and can metabolize diverse organic compounds including glucose, fructose, galactose, cellobiose, mannose, sucrose, trehalose, arbutin, salcin, xylose, arabinose and ribose.


July 7, 2019

Comparative genomic analysis reveals genetic features related to the virulence of Bacillus cereus FORC_013.

Bacillus cereus is well known as a gastrointestinal pathogen that causes food-borne illness. In the present study, we sequenced the complete genome of B. cereus FORC_013 isolated from fried eel in South Korea. To extend our understanding of the genomic characteristics of FORC_013, we conducted a comparative analysis with the published genomes of other B. cereus strains.We fully assembled the single circular chromosome (5,418,913 bp) and one plasmid (259,749 bp); 5511 open reading frames (ORFs) and 283 ORFs were predicted for the chromosome and plasmid, respectively. Moreover, we detected that the enterotoxin (NHE, HBL, CytK) induces food-borne illness with diarrheal symptom, and that the pleiotropic regulator, along with other virulence factors, plays a role in surviving and biofilm formation. Through comparative analysis using the complete genome sequence of B. cereus FORC_013, we identified both positively selected genes related to virulence regulation and 224 strain-specific genes of FORC_013.Through genome analysis of B. cereus FORC_013, we identified multiple virulence factors that may contribute to pathogenicity. These results will provide insight into further studies regarding B. cereus pathogenesis mechanism at the genomic level.


July 7, 2019

Whole-genome comparative analysis of Salmonella enterica serovar Newport strains reveals lineage-specific divergence.

Salmonella enterica subsp. enterica serovar Newport has been associated with various foodborne outbreaks in humans and animals. Phylogenetically, serovar Newport is one of several Salmonella serovars that are polyphyletic. To understand more about the polyphyletic nature of this serovar, six food, environment, and human isolates from different Newport lineages were selected for genome comparison analyses. Whole genome comparisons demonstrated that heterogeneity mostly occurred in the prophage regions. Lineage-specific characteristics were also present in the Salmonella pathogenicity islands and fimbrial operons. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution 2017. This work is written by US Government employees and is in the public domain in the US.


July 7, 2019

Genome characteristics of Lactobacillus fermentum strain JDFM216 for application as probiotic bacteria.

Lactobacillus fermentum strain JDFM216, isolated from a Korean infant feces sample, possesses the ability to enhance the longevity and immune response of a Caenorhabditis elegans host. To explore the characteristics of strain JDFM216 at the genetic level, we performed whole-genome sequencing using the PacBio system. The circular draft genome has a total length of 2,076,427 bp and a total of 2,682 encoding sequences were identified. Five phylogenetically featured genes possibly related to the longevity and immune response of the host were identified in L. fermentum strain JDFM216. These genes encode UDP-N-acetylglucosamine 1-carboxyvinyltransferase (E.C. 2.5.1.7), ErfK/YbiS/YcfS/YnhG family protein, site-specific recombinase XerD, homocysteine S-methyltransferase (E.C. 2.1.1.10), and aspartate-ammonia ligase (E.C. 6.3.1.1), which are involved in peptidoglycan synthesis and amino acid metabolism in the gut environment. Our findings on the genetic background of L. fermentum strain JDFM216 and its potential candidate genes for host longevity and immune response provide new insight for the application of this strain in the food industry as newly isolated functional probiotic.


July 7, 2019

Insight into potential probiotic markers predicted in Lactobacillus pentosus MP-10 genome sequence.

Lactobacillus pentosus MP-10 is a potential probiotic lactic acid bacterium originally isolated from naturally fermented Aloreña green table olives. The entire genome sequence was annotated to in silico analyze the molecular mechanisms involved in the adaptation of L. pentosus MP-10 to the human gastrointestinal tract (GIT), such as carbohydrate metabolism (related with prebiotic utilization) and the proteins involved in bacteria-host interactions. We predicted an arsenal of genes coding for carbohydrate-modifying enzymes to modify oligo- and polysaccharides, such as glycoside hydrolases, glycoside transferases, and isomerases, and other enzymes involved in complex carbohydrate metabolism especially starch, raffinose, and levan. These enzymes represent key indicators of the bacteria’s adaptation to the GIT environment, since they involve the metabolism and assimilation of complex carbohydrates not digested by human enzymes. We also detected key probiotic ligands (surface proteins, excreted or secreted proteins) involved in the adhesion to host cells such as adhesion to mucus, epithelial cells or extracellular matrix, and plasma components; also, moonlighting proteins or multifunctional proteins were found that could be involved in adhesion to epithelial cells and/or extracellular matrix proteins and also affect host immunomodulation. In silico analysis of the genome sequence of L. pentosus MP-10 is an important initial step to screen for genes encoding for proteins that may provide probiotic features, and thus provides one new routes for screening and studying this potentially probiotic bacterium.


July 7, 2019

Assessment of bacterial profiles in aged, home-made Sichuan paocai brine with varying titratable acidity by PacBio SMRT Sequencing technology

Sichuan paocai, a traditional Chinese fermented vegetable, is rife with lactic acid bacteria (LAB). However, the precise bacterial profiles of home-made Sichuan paocai brine (HSPB) remain unclear. In this study, the bacterial compositions of 38 aged HSPB samples with varying titratable acidity (TA) were determined by SMRT sequencing of the full-length 16S rRNA gene. The lactic and acetic acids of HSPBs were also measured to determine any relevance with the bacterial profiles. The SMRT sequencing results reveal that the HSPB bacterial communities were comprised of numerous phylogenetic taxa, including 35 phyla, 371 genera, and 593 species; the bacterial diversity decreased as HSPB acidity increased. Lactobacillus acetotolerans, which was positively correlated to HSPB acidity, was the most dominant species followed by Lactobacillus brevis, which was positively related to acetic acid in the samples. A few opportunistic pathogens (e.g. Serratia marcescens and Stenotrophomonas maltophilia) were also detected. Sample groups with lower acidity had higher bacterial diversity and more Lactobacillus species with relative abundance >1% and opportunistics than higher-acidity samples. The results presented here report the comprehensive bacterial profiles of home-made Sichuan paocai for the first time via SMRT sequencing technology and the correlation between TA and bacterial compositions. It is necessary to further investigate the opportunistics detected in this work as they relate to the safety and quality of paocai.


July 7, 2019

Characterization of NDM-5-positive extensively resistant Escherichia coli isolates from dairy cows.

The aim of this study was to investigate the prevalence of blaNDM-5 gene in Escherichia coli isolates from dairy cows and to characterize the molecular traits of the blaNDM-5-positive isolates. A total of 169 cows were sampled (169 feces and 169 raw milk samples) in three dairy farms in Jiangsu Province and 203 E. coli isolates were recovered. Among these strains, three isolates carried blaNDM-5 gene, including one co-harboring mcr-1, which belonged to sequence type 446 and the other two belonged to ST2. Susceptibility testing revealed that the three blaNDM-5-positive isolates showed extensive resistance to antimicrobials. The blaNDM-5 gene was located on a ~46-kb IncX3 transferrable pNDM-MGR194-like plasmid in all three isolates, while mcr-1 was located on a ~260-kb IncHI2 plasmid pXGE1mcr. Competition experiments revealed that acquisition of blaNDM-5 or mcr-1-bearing plasmid can incur fitness cost of bacterial host, however, plasmid stability testing showed that both blaNDM-5 and mcr-1-carrying plasmid maintained stable in the hosts after ten passages without antimicrobial selection. Whole genome sequencing revealed that the mcr-1 gene coexisted with multiple resistance genes in pXGE1mcr and the backbone of this plasmid was similar to that of previously reported mcr-1-positive plasmid pHNSHP45-2. Moreover, pXGE1mcr could be conjugated into clinical NDM-5-positive E. coli isolates in vitro, thereby generating strains that approached pan-resistance. Active surveillance efforts are imperative to monitor the prevalence of blaNDM-5 and mcr-1 in carbapenem-resistant Enterobacteriaceae from dairy farms throughout China. Copyright © 2017 Elsevier B.V. All rights reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.