Menu
September 22, 2019

Opposite polarity monospore genome de novo sequencing and comparative analysis reveal the possible heterothallic life cycle of Morchella importuna.

Morchella is a popular edible fungus worldwide due to its rich nutrition and unique flavor. Many research efforts were made on the domestication and cultivation of Morchella all over the world. In recent years, the cultivation of Morchella was successfully commercialized in China. However, the biology is not well understood, which restricts the further development of the morel fungus cultivation industry. In this paper, we performed de novo sequencing and assembly of the genomes of two monospores with a different mating type (M04M24 and M04M26) isolated from the commercially cultivated strain M04. Gene annotation and comparative genome analysis were performed to study differences in CAZyme (Carbohydrate-active enzyme) enzyme content, transcription factors, duplicated sequences, structure of mating type sites, and differences at the gene and functional levels between the two monospore strains of M. importuna. Results showed that the de novo assembled haploid M04M24 and M04M26 genomes were 48.98 and 51.07 Mb, respectively. A complete fine physical map of M. importuna was obtained from genome coverage and gene completeness evaluation. A total of 10,852 and 10,902 common genes and 667 and 868 endemic genes were identified from the two monospore strains, respectively. The Gene Ontology (GO) and KAAS (KEGG Automatic Annotation Serve) enrichment analyses showed that the endemic genes performed different functions. The two monospore strains had 99.22% collinearity with each other, accompanied with certain position and rearrangement events. Analysis of complete mating-type loci revealed that the two monospore M. importuna strains contained an independent mating-type structure and remained conserved in sequence and location. The phylogenetic and divergence time of M. importuna was analyzed at the whole-genome level for the first time. The bifurcation time of morel and tuber was estimated to be 201.14 million years ago (Mya); the two monospore strains with a different mating type represented the evolution of different nuclei, and the single copy homologous genes between them were also different due to a genetic differentiation distance about 0.65 Mya. Compared with truffles, M. importuna had an extension of 28 clusters of orthologous genes (COGs) and a contraction of two COGs. The two different polar nuclei with different degrees of contraction and expansion suggested that they might have undergone different evolutionary processes. The different mating-type structures, together with the functional clustering and enrichment analysis results of the endemic genes of the two different polar nuclei, imply that M. importuna might be a heterothallic fungus and the interaction between the endemic genes may be necessary for its complete life history. Studies on the genome of M. importuna facilitate a better understanding of morel biology and evolution.


September 22, 2019

Molecular basis for the final oxidative rearrangement steps in chartreusin biosynthesis.

Oxidative rearrangements play key roles in introducing structural complexity and biological activities of natural products biosynthesized by type II polyketide synthases (PKSs). Chartreusin (1) is a potent antitumor polyketide that contains a unique rearranged pentacyclic aromatic bilactone aglycone derived from a type II PKS. Herein, we report an unprecedented dioxygenase, ChaP, that catalyzes the final a-pyrone ring formation in 1 biosynthesis using flavin-activated oxygen as an oxidant. The X-ray crystal structures of ChaP and two homologues, docking studies, and site-directed mutagenesis provided insights into the molecular basis of the oxidative rearrangement that involves two successive C-C bond cleavage steps followed by lactonization. ChaP is the first example of a dioxygenase that requires a flavin-activated oxygen as a substrate despite lacking flavin binding sites, and represents a new class in the vicinal oxygen chelate enzyme superfamily.


September 22, 2019

Groundnut entered post-genome sequencing era: Opportunities and challenges in translating genomic information from genome to field

Cultivated groundnut or peanut (Arachis hypogaea) is an allopolyploid crop with a large complex genome and genetic barrier for exchanging genetic diversity from its wild relatives due to ploidy differences. Optimum genetic and genomic resources are key for accelerating the process for trait mapping and gene discovery and deploying diagnostic markers in genomics-assisted breeding. The better utilization of different aspects of peanut biology such as genetics, genomics, transcriptomics, proteomics, epigenomics, metabolomics, and interactomics can be of great help to groundnut genetic improvement program across the globe. The availability of high-quality reference genome is core to all the “omics” approaches, and hence optimum genomic resources are a must for fully exploiting the potential of modern science into conventional breeding. In this context, groundnut is passing through a very critical and transformational phase by making available the required genetic and genomic resources such as reference genomes of progenitors, resequencing of diverse lines, transcriptome resources, germplasm diversity panel, and multi-parent genetic populations for conducting high-resolution trait mapping, identification of associated markers, and development of diagnostic markers for selected traits. Lastly, the available resources have been deployed in translating genomic information from genome to field by developing improved groundnut lines with enhanced resistance to root-knot nematode, rust, and late leaf spot and high oleic acid. In addition, the International Peanut Genome Initiative (IPGI) have made available the high-quality reference genome for cultivated tetraploid groundnut which will facilitate better utilization of genetic resources in groundnut improvement. In parallel, the development of high-density genotyping platforms, such as Axiom_Arachis array with 58 K SNPs, and constitution of training population will initiate the deployment of the modern breeding approach, genomic selection, for achieving higher genetic gains in less time with more precision.


September 22, 2019

Co-location of the blaKPC-2, blaCTX-M-65, rmtB and virulence relevant factors in an IncFII plasmid from a hypermucoviscous Klebsiella pneumoniae isolate.

Hypervirulent variants of klebsiella pneumoniae (hvKP), which cause serious infections not only healthy individuals, but also the immunocompromised patients, have been increasingly reported recently. One conjugation of a hypermucoviscous strian SWU01 co-carried the resistance gene blaKPC-2 and virulence gene iroN by the PCR detection from three carbapenem-resistance hvKP. To know the genetic context of this plasmid. The whole genome of this strain was sequenced. We got a 162,552-bp plasmid (pSWU01) which co-carried the resistance gene blaKPC-2 and virulence gene iroN. It is composed of a typical IncFII-type backbone, five resistance genes including blaCTX-M-65, blaKPC-2, blaSHV-12, blaTEM-1 and rmtB, and several virulence relevant factors including iroN, traT and toxin-antitoxin systems. The plasmid pSWU01 co-carrying the multidrug resistance determinants and virulence relevant factors from the hypermucoviscous K. pneumoniae represents a novel therapeutic challenge. Copyright © 2018 Elsevier Ltd. All rights reserved.


September 22, 2019

Comparative genomics reveals diverse capsular polysaccharide synthesis gene clusters in emerging Raoultella planticola.

Raoultella planticola is an emerging zoonotic pathogen that is associated with rare but life-threatening cases of bacteremia, biliary tract infections, and urinary tract infections. Moreover, increasing antimicrobial resistance in the organism poses a potential threat to public health. In spite of its importance as a human pathogen, the genome of R. planticola remains largely unexplored and little is known about its virulence factors. Although lipopolysaccharides has been detected in R. planticola and implicated in the virulence in earlier studies, the genetic background is unknown. Here, we report the complete genome and comparative analysis of the multidrug-resistant clinical isolate R. planticola GODA. The complete genome sequence of R. planticola GODA was sequenced using single-molecule real-time DNA sequencing. Comparative genomic analysis reveals distinct capsular polysaccharide synthesis gene clusters in R. planticola GODA. In addition, we found bla TEM-57 and multiple transporters related to multidrug resistance. The availability of genomic data in open databases of this emerging zoonotic pathogen, in tandem with our comparative study, provides better understanding of R. planticola and the basis for future work.


September 22, 2019

Genome-wide SNP and InDel mutations in Mycobacterium tuberculosis associated with rifampicin and isoniazid resistance

Objective: Multiple resistances to isoniazid and rifampicin lead to the majority of death associated with M. tuberculosis infection. This study aimed to characterize the single nucleotide polymorphisms (SNPs) and insertion and deletion (InDel) mutations associated with isoniazid and rifampicin resistance. Methods: The M. tuberculosis strain H37Rv was cultured and treated with isoniazid or rifampicin for generations. Total DNA samples from different generations were extracted for construction of DNA library, and the SNP and InDel mutation in different samples were detected by whole genome sequencing. Bioinformatics analysis such as phylogenetic tree and heap map were also performed. Results: Totally 58 nonsynonymous SNP mutations, 64 synonymous SNP mutations, and 99 SNP mutations in intergenic regions were detected in M. tuberculosis strains treated with rifampicin or isoniazid. Seven InDel mutations were found in the intergenic regions, and also six frameshift InDel mutation and three non- frameshift InDel mutations were also characterized. The phylogenetic tree showed clustering of all samples into three main subgroups. A great number of known and newly identified genes associated with drug resistance were detected in M. tuberculosis, showing distinct mutation patterns. Conclusion: By whole genome sequencing, many genetic mutations in both known and new genes associated with isoniazid and rifampicin resistance were charac- terized in M. tuberculosis.


September 22, 2019

Characterization of Haemophilus parasuis serovar 2 CL120103, a moderately virulent strain in China

Haemophilus parasuis is an important bacterium affecting pigs, causing Glässer’s disease. To further characterize this species, we determined the complete genomic sequence of H. parasuis CL120103, which was isolated from diseased pigs. The strain H. parasuis CL120103 was identified as serovar 2. The size of the largest scaffold is 2,326,318 bp and contains 145 large contigs, with the N50 contig being 20,573 bp in length. The complete genome of H. parasuis CL120103 is 2,305,354 bp in length with 39.97% GC content and contains 2227 protein-coding genes, 19 ribosomal rRNA operons and 60 tRNA genes. Sequence similarity of the genome of H. parasuis CL120103 to the previously sequenced genome of H. parasuis was up to 96% and query cover to 86%. Annotation of the genome of H. parasuis CL120103 identified a number of genes encoding potential virulence factors. These virulence factors are involved in metabolism, adhesion, secretion and LPS biosynthesis. These related genes pave the way to better understand mechanisms underlying metabolic capabilities. The comprehensive genetic and phylogenetic analysis shows that H. parasuis is closely related to Actinobacillus pleuropneumoniae and provides a foundation for future experimental confirmation of the virulence and pathogen-host interactions in H. parasuis.


September 22, 2019

Comparative genomics of Salmonella enterica serovar Montevideo reveals lineage-specific gene differences that may influence ecological niche association.

Salmonella enterica serovar Montevideo has been linked to recent foodborne illness outbreaks resulting from contamination of products such as fruits, vegetables, seeds and spices. Studies have shown that Montevideo also is frequently associated with healthy cattle and can be isolated from ground beef, yet human salmonellosis outbreaks of Montevideo associated with ground beef contamination are rare. This disparity fuelled our interest in characterizing the genomic differences between Montevideo strains isolated from healthy cattle and beef products, and those isolated from human patients and outbreak sources. To that end, we sequenced 13 Montevideo strains to completion, producing high-quality genome assemblies of isolates from human patients (n=8) or from healthy cattle at slaughter (n=5). Comparative analysis of sequence data from this study and publicly available sequences (n=72) shows that Montevideo falls into four previously established clades, differentially occupied by cattle and human strains. The results of these analyses reveal differences in metabolic islands, environmental adhesion determinants and virulence factors within each clade, and suggest explanations for the infrequent association between bovine isolates and human illnesses.


September 22, 2019

Distinct genomic features characterize two clades of Corynebacterium diphtheriae: Proposal of Corynebacterium diphtheriae subsp. diphtheriae subsp. nov. and Corynebacterium diphtheriae subsp. lausannense subsp. nov.

Corynebacterium diphtheriae is the etiological agent of diphtheria, a disease caused by the presence of the diphtheria toxin. However, an increasing number of records report non-toxigenic C. diphtheriae infections. Here, a C. diphtheriae strain was recovered from a patient with a past history of bronchiectasis who developed a severe tracheo-bronchitis with multiple whitish lesions of the distal trachea and the mainstem bronchi. Whole-genome sequencing (WGS), performed in parallel with PCR targeting the toxin gene and the Elek test, provided clinically relevant results in a short turnaround time, showing that the isolate was non-toxigenic. A comparative genomic analysis of the new strain (CHUV2995) with 56 other publicly available genomes of C. diphtheriae revealed that the strains CHUV2995, CCUG 5865 and CMCNS703 share a lower average nucleotide identity (ANI) (95.24 to 95.39%) with the C. diphtheriae NCTC 11397T reference genome than all other C. diphtheriae genomes (>98.15%). Core genome phylogeny confirmed the presence of two monophyletic clades. Based on these findings, we propose here two new C. diphtheriae subspecies to replace the lineage denomination used in previous multilocus sequence typing studies: C. diphtheriae subsp. lausannense subsp. nov. (instead of lineage-2), regrouping strains CHUV2995, CCUG 5865, and CMCNS703, and C. diphtheriae subsp. diphtheriae subsp. nov, regrouping all other C. diphtheriae in the dataset (instead of lineage-1). Interestingly, members of subspecies lausannense displayed a larger genome size than subspecies diphtheriae and were enriched in COG categories related to transport and metabolism of lipids (I) and inorganic ion (P). Conversely, they lacked all genes involved in the synthesis of pili (SpaA-type, SpaD-type and SpaH-type), molybdenum cofactor and of the nitrate reductase. Finally, the CHUV2995 genome is particularly enriched in mobility genes and harbors several prophages. The genome encodes a type II-C CRISPR-Cas locus with 2 spacers that lacks csn2 or cas4, which could hamper the acquisition of new spacers and render strain CHUV2995 more susceptible to bacteriophage infections and gene acquisition through various mechanisms of horizontal gene transfer.


September 22, 2019

Functional and genome sequence-driven characterization of tal effector gene repertoires reveals novel variants with altered specificities in closely related Malian Xanthomonas oryzae pv. oryzae strains.

Rice bacterial leaf blight (BLB) is caused by Xanthomonas oryzae pv. oryzae (Xoo) which injects Transcription Activator-Like Effectors (TALEs) into the host cell to modulate the expression of target disease susceptibility genes. Xoo major-virulence TALEs universally target susceptibility genes of the SWEET sugar transporter family. TALE-unresponsive alleles of OsSWEET genes have been identified in the rice germplasm or created by genome editing and confer resistance to BLB. In recent years, BLB has become one of the major biotic constraints to rice cultivation in Mali. To inform the deployment of alternative sources of resistance in this country, rice lines carrying alleles of OsSWEET14 unresponsive to either TalF (formerly Tal5) or TalC, two important TALEs previously identified in West African Xoo, were challenged with a panel of strains recently isolated in Mali and were found to remain susceptible to these isolates. The characterization of TALE repertoires revealed that talF and talC specific molecular markers were simultaneously present in all surveyed Malian strains, suggesting that the corresponding TALEs are broadly deployed by Malian Xoo to redundantly target the OsSWEET14 gene promoter. Consistent with this, the capacity of most Malian Xoo to induce OsSWEET14 was unaffected by either talC- or talF-unresponsive alleles of this gene. Long-read sequencing and assembly of eight Malian Xoo genomes confirmed the widespread occurrence of active TalF and TalC variants and provided a detailed insight into the diversity of TALE repertoires. All sequenced strains shared nine evolutionary related tal effector genes. Notably, a new TalF variant that is unable to induce OsSWEET14 was identified. Furthermore, two distinct TalB variants were shown to have lost the ability to simultaneously induce two susceptibility genes as previously reported for the founding members of this group from strains MAI1 and BAI3. Yet, both new TalB variants retained the ability to induce one or the other of the two susceptibility genes. These results reveal molecular and functional differences in tal repertoires and will be important for the sustainable deployment of broad-spectrum and durable resistance to BLB in West Africa.


September 22, 2019

Towards map-based cloning of FB_Mfu10: identification of a receptor-like kinase candidate gene underlying the Malus fusca fire blight resistance locus on linkage group 10.

Breeding for resistance against the destructive fire blight disease of apples is the most sustainable strategy to control the menace of this disease, and has become increasingly important in European apple breeding programs. Since most cultivars are susceptible, wild accessions have been explored for resistance with quantitative trait loci detected in a few wild species. Fire blight resistance of Malus fusca was described following phenotypic evaluations with a C-type strain of Erwinia amylovora, Ea222_JKI, and the detection of a major QTL on chromosome 10 (Mfu10) of this crabapple. The stability of the resistance of M. fusca and Mfu10 has been evaluated using two other strains, the highly aggressive Canadian S-type strain-Ea3049, and the avrRpt2EA mutant-ZYRKD3-1, both of which overcome the resistance of Malus ×robusta 5, a wild species accession with an already described fire blight resistance gene. To pave the way for positional cloning of the underlying fire blight resistance gene of M. fusca, we have fine mapped the QTL region on linkage group 10 using 1888 individuals and 23 newly developed molecular markers, thus delimiting the interval of interest to 0.33 cM between markers FR39G5T7xT7y/FR24N24RP and FRMf7358424/FR46H22. Tightly linked SSR markers are suitable for marker-assisted selection in breeding programs. Furthermore, a bacterial artificial chromosome (BAC) clone spanning FB_Mfu10 region was isolated and sequenced. One putative fire blight resistance candidate gene of M. fusca was predicted on the sequence of BAC 46H22 within the resistance region that encodes B-lectin and serine/threonine kinase domains.


September 22, 2019

The energy-coupling factor transporter module EcfAA’T, a novel candidate for the genetic basis of fatty acid-auxotrophic small-colony variants of Staphylococcus aureus.

Staphylococcal small-colony variants (SCVs) are invasive and persistent due to their ability to thrive intracellularly and to evade the host immune response. Thus, the course of infections due to this phenotype is often chronic, relapsing, and therapy-refractory. In order to improve treatment of patients suffering from SCV-associated infections, it is of major interest to understand triggers for the development of this phenotype, in particular for strains naturally occurring in clinical settings. Within this study, we comprehensively characterized two different Staphylococcus aureus triplets each consisting of isogenic strains comprising (i) clinically derived SCV phenotypes with auxotrophy for unsaturated fatty acids, (ii) the corresponding wild-types (WTs), and (iii) spontaneous in vitro revertants displaying the normal phenotype (REVs). Comparison of whole genomes revealed that clinical SCV isolates were closely related to their corresponding WTs and REVs showing only seven to eight alterations per genome triplet. However, both SCVs carried a mutation within the energy-coupling factor (ECF) transporter-encoding ecf module (EcfAA’T) resulting in truncated genes. In both cases, these mutations were shown to be naturally restored in the respective REVs. Since ECF transporters are supposed to be essential for optimal bacterial growth, their dysfunction might constitute another mechanism for the formation of naturally occurring SCVs. Another three triplets analyzed revealed neither mutations in the EcfAA’T nor in other FASII-related genes underlining the high diversity of mechanisms leading to the fatty acid-dependent phenotype. This is the first report on the ECF transporter as genetic basis of fatty acid-auxotrophic staphylococcal SCVs.


September 22, 2019

Improved Brassica rapa reference genome by single-molecule sequencing and chromosome conformation capture technologies.

Brassica rapa comprises several important cultivated vegetables and oil crops. Current reference genome assemblies of Brassica rapa are quite fragmented and not highly contiguous, thereby limiting extensive genetic and genomic analyses. Here, we report an improved assembly of the B. rapa genome (v3.0) using single-molecule sequencing, optical mapping, and chromosome conformation capture technologies (Hi-C). Relative to the previous reference genomes, our assembly features a contig N50 size of 1.45?Mb, representing a ~30-fold improvement. We also identified a new event that occurred in the B. rapa genome ~1.2 million years ago, when a long terminal repeat retrotransposon (LTR-RT) expanded. Further analysis refined the relationship of genome blocks and accurately located the centromeres in the B. rapa genome. The B. rapa genome v3.0 will serve as an important community resource for future genetic and genomic studies in B. rapa. This resource will facilitate breeding efforts in B. rapa, as well as comparative genomic analysis with other Brassica species.


September 22, 2019

Detection and characterization of a clinical Escherichia coli ST3204 strain coproducing NDM-16 and MCR-1.

A plasmid-mediated colistin resistance gene, mcr-1, has been reported worldwide and has caused concern regarding a major therapeutic challenge. Alarmingly, mcr-1 has spread into clinical carbapenem-resistant Enterobacteriaceae isolates, resulting in extensively drug-resistant and even pan drug-resistant isolates that can cause untreatable infections. In this study, we report isolation of an extensively drug-resistant Escherichia coli strain EC1188 that coproduces NDM-16 and MCR-1 from a urine sample taken from a patient with craniocerebral injury.E. coli strain EC1188 was identified and subjected to genotyping, susceptibility testing and conjugation experiments. The genetic locations of blaNDM-16 and mcr-1 were established with southern blot hybridization. The complete genome sequence of this strain was obtained and the genetic characteristics of the mcr-1- and blaNDM-16-harboring plasmids were analyzed. In addition, comparative genetic analyses of mcr-1 and blaNDM-16 with closely related plasmids were also carried out.Whole-genome sequencing revealed that strain EC1188 possess various resistance genes and virulence genes. S1-pulsed-field gel electrophoresis and southern blot suggested that the blaNDM-16 and mcr-1 genes were located on an ~65 kb plasmid and an ~80 kb plasmid, respectively. Moreover, the two genes could successfully transfer their resistance phenotype to E. coli strain C600. Sequence analysis showed that these two plasmids possessed high sequence similarity to previously reported blaNDM-5-harboring and mcr-1-harboring plasmids in China.To the best of our knowledge, this is the first report to isolate an E. coli strain that coproduces NDM-16 and MCR-1. In addition, we characterized the blaNDM-16-harboring plasmid for the first time. Our study further emphasizes that the co-occurrence of the two prevalent transferrable resistance plasmids in a single isolate is highly significant because infections caused by MCR-1-producing carbapenem-resistant Enterobacteriaceae isolates are increasing each year. It is imperative to perform active surveillance to prevent further dissemination of MCR-1-producing CRE isolates.


September 22, 2019

Assembly and comparative analysis of the complete mitochondrial genome sequence of Sophora japonica ‘JinhuaiJ2’.

Sophora japonica L. (Faboideae, Leguminosae) is an important traditional Chinese herb with a long history of cultivation. Its flower buds and fruits contain abundant flavonoids, and therefore, the plants are cultivated for the industrial extraction of rutin. Here, we determined the complete nucleotide sequence of the mitochondrial genome of S. japonica ‘JinhuaiJ2’, the most widely planted variety in Guangxi region of China. The total length of the mtDNA sequence is 484,916 bp, with a GC content of 45.4%. Sophora japonica mtDNA harbors 32 known protein-coding genes, 17 tRNA genes, and three rRNA genes with 17 cis-spliced and five trans-spliced introns disrupting eight protein-coding genes. The gene coding and intron regions, and intergenic spacers account for 7.5%, 5.8% and 86.7% of the genome, respectively. The gene profile of S. japonica mitogenome differs from that of the other Faboideae species by only one or two gene gains or losses. Four of the 17 cis-spliced introns showed distinct length variations in the Faboideae, which could be attributed to the homologous recombination of the short repeats measuring a few bases located precisely at the edges of the putative deletions. This reflects the importance of small repeats in the sequence evolution in Faboideae mitogenomes. Repeated sequences of S. japonica mitogenome are mainly composed of small repeats, with only 20 medium-sized repeats, and one large repeat, adding up to 4% of its mitogenome length. Among the 25 pseudogene fragments detected in the intergenic spacer regions, the two largest ones and their corresponding functional gene copies located in two different sets of medium-sized repeats, point to their origins from homologous recombinations. As we further observed the recombined reads associated with the longest repeats of 2,160 bp with the PacBio long read data set of just 15 × in depth, repeat mediated homologous recombinations may play important role in the mitogenomic evolution of S. japonica. Our study provides insightful knowledge to the genetic background of this important herb species and the mitogenomic evolution in the Faboideae species.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.