Menu
July 7, 2019

Efficient, cost-effective, high-throughput, Multilocus Sequencing Typing (MLST) method, NGMLST, and the analytical software program MLSTEZ.

Multilocus sequence typing (MLST) has become the preferred method for genotyping many biological species. It can be used to identify major phylogenetic clades, molecular groups, or subpopulations of a species, as well as individual strains or clones. However, conventional MLST is costly and time consuming, which limits its power for genotyping large numbers of samples. Here, we describe a new MLST method that uses next-generation sequencing, a multiplexing protocol, and appropriate analytical software to provide accurate, rapid, and economical MLST genotyping of 96 or more isolates in a single assay.


July 7, 2019

Origins of the current seventh cholera pandemic.

Vibrio cholerae has caused seven cholera pandemics since 1817, imposing terror on much of the world, but bacterial strains are currently only available for the sixth and seventh pandemics. The El Tor biotype seventh pandemic began in 1961 in Indonesia, but did not originate directly from the classical biotype sixth-pandemic strain. Previous studies focused mainly on the spread of the seventh pandemic after 1970. Here, we analyze in unprecedented detail the origin, evolution, and transition to pandemicity of the seventh-pandemic strain. We used high-resolution comparative genomic analysis of strains collected from 1930 to 1964, covering the evolution from the first available El Tor biotype strain to the start of the seventh pandemic. We define six stages leading to the pandemic strain and reveal all key events. The seventh pandemic originated from a nonpathogenic strain in the Middle East, first observed in 1897. It subsequently underwent explosive diversification, including the spawning of the pandemic lineage. This rapid diversification suggests that, when first observed, the strain had only recently arrived in the Middle East, possibly from the Asian homeland of cholera. The lineage migrated to Makassar, Indonesia, where it gained the important virulence-associated elements Vibrio seventh pandemic island I (VSP-I), VSP-II, and El Tor type cholera toxin prophage by 1954, and it then became pandemic in 1961 after only 12 additional mutations. Our data indicate that specific niches in the Middle East and Makassar were important in generating the pandemic strain by providing gene sources and the driving forces for genetic events.


July 7, 2019

Characterization of tet(Y)-carrying LowGC plasmids exogenously captured from cow manure at a conventional dairy farm.

Manure from dairy farms has been shown to contain diverse tetracycline resistance genes that are transferable to soil. Here, we focus on conjugative plasmids that may spread tetracycline resistance at a conventional dairy farm. We performed exogenous plasmid isolation from cattle feces using chlortetracycline for transconjugant selection. The transconjugants obtained harbored LowGC-type plasmids and tet(Y). A representative plasmid (pFK2-7) was fully sequenced and this was compared with previously described LowGC plasmids from piggery manure-treated soil and a GenBank record from Acinetobacter nosocomialis that we also identified as a LowGC plasmid. The pFK2-7 plasmid had the conservative backbone typical of LowGC plasmids, though this region was interrupted with an insert containing the tet(Y)-tet(R) tetracycline resistance genes and the strA-strB streptomycin resistance genes. Despite Acinetobacter populations being considered natural hosts of LowGC plasmids, these plasmids were not found in three Acinetobacter isolates from the study farm. The isolates harbored tet(Y)-tet(R) genes in identical genetic surroundings as pFK2-7, however, suggesting genetic exchange between Acinetobacter and LowGC plasmids. Abundance of LowGC plasmids and tet(Y) was correlated in manure and soil samples from the farm, indicating that LowGC plasmids may be involved in the spread of tet(Y) in the environment.© FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.


July 7, 2019

Genomic insights into a sustained national outbreak of Yersinia pseudotuberculosis.

In 2014, a sustained outbreak of yersiniosis due to Yersinia pseudotuberculosis occurred across all major cities in New Zealand (NZ), with a total of 220 laboratory-confirmed cases, representing one of the largest ever reported outbreaks of Y. pseudotuberculosis. Here, we performed whole genome sequencing of outbreak-associated isolates to produce the largest population analysis to date of Y. pseudotuberculosis, giving us unprecedented capacity to understand the emergence and evolution of the outbreak clone. Multivariate analysis incorporating our genomic and clinical epidemiological data strongly suggested a single point-source contamination of the food chain, with subsequent nationwide distribution of contaminated produce. We additionally uncovered significant diversity in key determinants of virulence, which we speculate may help explain the high morbidity linked to this outbreak.


July 7, 2019

svclassify: a method to establish benchmark structural variant calls.

The human genome contains variants ranging in size from small single nucleotide polymorphisms (SNPs) to large structural variants (SVs). High-quality benchmark small variant calls for the pilot National Institute of Standards and Technology (NIST) Reference Material (NA12878) have been developed by the Genome in a Bottle Consortium, but no similar high-quality benchmark SV calls exist for this genome. Since SV callers output highly discordant results, we developed methods to combine multiple forms of evidence from multiple sequencing technologies to classify candidate SVs into likely true or false positives. Our method (svclassify) calculates annotations from one or more aligned bam files from many high-throughput sequencing technologies, and then builds a one-class model using these annotations to classify candidate SVs as likely true or false positives.We first used pedigree analysis to develop a set of high-confidence breakpoint-resolved large deletions. We then used svclassify to cluster and classify these deletions as well as a set of high-confidence deletions from the 1000 Genomes Project and a set of breakpoint-resolved complex insertions from Spiral Genetics. We find that likely SVs cluster separately from likely non-SVs based on our annotations, and that the SVs cluster into different types of deletions. We then developed a supervised one-class classification method that uses a training set of random non-SV regions to determine whether candidate SVs have abnormal annotations different from most of the genome. To test this classification method, we use our pedigree-based breakpoint-resolved SVs, SVs validated by the 1000 Genomes Project, and assembly-based breakpoint-resolved insertions, along with semi-automated visualization using svviz.We find that candidate SVs with high scores from multiple technologies have high concordance with PCR validation and an orthogonal consensus method MetaSV (99.7 % concordant), and candidate SVs with low scores are questionable. We distribute a set of 2676 high-confidence deletions and 68 high-confidence insertions with high svclassify scores from these call sets for benchmarking SV callers. We expect these methods to be particularly useful for establishing high-confidence SV calls for benchmark samples that have been characterized by multiple technologies.


July 7, 2019

Assembly of the draft genome of buckwheat and its applications in identifying agronomically useful genes.

Buckwheat (Fagopyrum esculentum Moench; 2n = 2x = 16) is a nutritionally dense annual crop widely grown in temperate zones. To accelerate molecular breeding programmes of this important crop, we generated a draft assembly of the buckwheat genome using short reads obtained by next-generation sequencing (NGS), and constructed the Buckwheat Genome DataBase. After assembling short reads, we determined 387,594 scaffolds as the draft genome sequence (FES_r1.0). The total length of FES_r1.0 was 1,177,687,305 bp, and the N50 of the scaffolds was 25,109 bp. Gene prediction analysis revealed 286,768 coding sequences (CDSs; FES_r1.0_cds) including those related to transposable elements. The total length of FES_r1.0_cds was 212,917,911 bp, and the N50 was 1,101 bp. Of these, the functions of 35,816 CDSs excluding those for transposable elements were annotated by BLAST analysis. To demonstrate the utility of the database, we conducted several test analyses using BLAST and keyword searches. Furthermore, we used the draft genome as a reference sequence for NGS-based markers, and successfully identified novel candidate genes controlling heteromorphic self-incompatibility of buckwheat. The database and draft genome sequence provide a valuable resource that can be used in efforts to develop buckwheat cultivars with superior agronomic traits.© The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.


July 7, 2019

Clonal dissemination of Pseudomonas aeruginosa sequence type 235 isolates carrying blaIMP-6 and emergence of blaGES-24 and blaIMP-10 on novel genomic islands PAGI-15 and -16 in South Korea.

A total of 431 Pseudomonas aeruginosa clinical isolates were collected from 29 general hospitals in South Korea in 2015. Antimicrobial susceptibility was tested by the disk diffusion method, and MICs of carbapenems were determined by the agar dilution method. Carbapenemase genes were amplified by PCR and sequenced, and the structures of class 1 integrons surrounding the carbapenemase gene cassettes were analyzed by PCR mapping. Multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) were performed for strain typing. Whole-genome sequencing was carried out to analyze P. aeruginosa genomic islands (PAGIs) carrying the blaIMP-6, blaIMP-10, and blaGES-24 genes. The rates of carbapenem-nonsusceptible and carbapenemase-producing P. aeruginosa isolates were 34.3% (148/431) and 9.5% (41/431), respectively. IMP-6 was the most prevalent carbapenemase type, followed by VIM-2, IMP-10, and GES-24. All carbapenemase genes were located on class 1 integrons of 6 different types on the chromosome. All isolates harboring carbapenemase genes exhibited genetic relatedness by PFGE (similarity > 80%); moreover, all isolates were identified as sequence type 235 (ST235), with the exception of two ST244 isolates by MLST. The blaIMP-6, blaIMP-10, and blaGES-24 genes were found to be located on two novel PAGIs, designated PAGI-15 and PAGI-16. Our data support the clonal spread of an IMP-6-producing P. aeruginosa ST235 strain, and the emergence of IMP-10 and GES-24 demonstrates the diversification of carbapenemases in P. aeruginosa in Korea. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 7, 2019

Complete genome sequence of human pathogen Kosakonia cowanii type strain 888-76T.

Kosakonia cowanii type strain 888-76T is a human pathogen which was originally isolated from blood as NIH group 42. In this study, we report the complete genome sequence of K. cowanii 888-76T. 888-76T has 1 chromosome and 2 plasmids with a total genome size of 4,857,567bp and C+G 56.15%. This genome sequence will not only help us to understand the virulence features of K. cowanii 888-76T but also provide us the useful information for the study of evolution of Kosakonia genus. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.


July 7, 2019

Microbial metagenomics mock scenario-based sample simulation (M3S3).

Shotgun sequencing in increasingly applied in clinical microbiology for unbiased culture-independent diagnosis. While software solutions for metagenomics proliferate, integration of metagenomics in clinical care, requires method standardisation and validation. Virtual metagenomics samples could underpin validation by substituting real samples and thus we sought to develop a novel solution for simulation of metagenomics samples based on user-defined clinical scenarios.We designed the Microbial Metagenomics Mock Scenario-based Sample Simulation (M3S3) workflow, which allows users to generate virtual samples from raw reads or assemblies. The M3S3 output is a mock sample in FASTQ or FASTA format. M3S3 was tested by generating virtual samples for ten challenging infectious disease scenarios, involving a background matrix ‘spiked’ in silico with pathogens including mixtures. Replicate samples (seven per scenario) were used to represent different compositional ratios. Virtual samples were analysed using Taxonomer and Kraken db.The ten challenge scenarios were successfully applied, generating 80 samples. For all tested scenarios, the virtual samples showed sequence compositions as predicted from the user input. Spiked pathogen sequences were identified with the majority of the replicates and most exhibited acceptable abundance (deviation between expected and observed abundance of spiked pathogens), with slight differences observed between software tools.Despite demonstrated proof-of-concept, integration of clinical metagenomics in routine microbiology remains a substantial challenge. M3S3 is capable of producing virtual samples on-demand, simulating a spectrum of clinical diagnostic scenarios of varying complexity. The M3S3 tool can therefore support the development and validation of standardised metagenomics applications. Copyright © 2017. Published by Elsevier Ltd.


July 7, 2019

Collection and storage of HLA NGS genotyping data for the 17th International HLA and Immunogenetics Workshop.

For over 50?years, the International HLA and Immunogenetics Workshops (IHIW) have advanced the fields of histocompatibility and immunogenetics (H&I) via community sharing of technology, experience and reagents, and the establishment of ongoing collaborative projects. Held in the fall of 2017, the 17th IHIW focused on the application of next generation sequencing (NGS) technologies for clinical and research goals in the H&I fields. NGS technologies have the potential to allow dramatic insights and advances in these fields, but the scope and sheer quantity of data associated with NGS raise challenges for their analysis, collection, exchange and storage. The 17th IHIW adopted a centralized approach to these issues, and we developed the tools, services and systems to create an effective system for capturing and managing these NGS data. We worked with NGS platform and software developers to define a set of distinct but equivalent NGS typing reports that record NGS data in a uniform fashion. The 17th IHIW database applied our standards, tools and services to collect, validate and store those structured, multi-platform data in an automated fashion. We have created community resources to enable exploration of the vast store of curated sequence and allele-name data in the IPD-IMGT/HLA Database, with the goal of creating a long-term community resource that integrates these curated data with new NGS sequence and polymorphism data, for advanced analyses and applications. Copyright © 2017 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.


July 7, 2019

Microbial sequence typing in the genomic era.

Next-generation sequencing (NGS), also known as high-throughput sequencing, is changing the field of microbial genomics research. NGS allows for a more comprehensive analysis of the diversity, structure and composition of microbial genes and genomes compared to the traditional automated Sanger capillary sequencing at a lower cost. NGS strategies have expanded the versatility of standard and widely used typing approaches based on nucleotide variation in several hundred DNA sequences and a few gene fragments (MLST, MLVA, rMLST and cgMLST). NGS can now accommodate variation in thousands or millions of sequences from selected amplicons to full genomes (WGS, NGMLST and HiMLST). To extract signals from high-dimensional NGS data and make valid statistical inferences, novel analytic and statistical techniques are needed. In this review, we describe standard and new approaches for microbial sequence typing at gene and genome levels and guidelines for subsequent analysis, including methods and computational frameworks. We also present several applications of these approaches to some disciplines, namely genotyping, phylogenetics and molecular epidemiology. Copyright © 2017 Elsevier B.V. All rights reserved.


July 7, 2019

A high throughput screen for active human transposable elements.

Transposable elements (TEs) are mobile genetic sequences that randomly propagate within their host’s genome. This mobility has the potential to affect gene transcription and cause disease. However, TEs are technically challenging to identify, which complicates efforts to assess the impact of TE insertions on disease. Here we present a targeted sequencing protocol and computational pipeline to identify polymorphic and novel TE insertions using next-generation sequencing: TE-NGS. The method simultaneously targets the three subfamilies that are responsible for the majority of recent TE activity (L1HS, AluYa5/8, and AluYb8/9) thereby obviating the need for multiple experiments and reducing the amount of input material required.Here we describe the laboratory protocol and detection algorithm, and a benchmark experiment for the reference genome NA12878. We demonstrate a substantial enrichment for on-target fragments, and high sensitivity and precision to both reference and NA12878-specific insertions. We report 17 previously unreported loci for this individual which are supported by orthogonal long-read evidence, and we identify 1470 polymorphic and novel TEs in 12 additional samples that were previously undocumented in databases of insertion polymorphisms.We anticipate that future applications of TE-NGS alongside exome sequencing of patients with sporadic disease will reduce the number of unresolved cases, and improve estimates of the contribution of TEs to human genetic disease.


July 7, 2019

Cupriavidus malaysiensis sp. nov., a novel poly(3-hydroxybutyrate-co-4-hydroxybutyrate) accumulating bacterium isolated from the Malaysian environment.

Bacterial classification on the basis of a polyphasic approach was conducted on three poly(3 hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] accumulating bacterial strains that were isolated from samples collected from Malaysian environments; Kulim Lake, Sg. Pinang river and Sg. Manik paddy field. The Gram-negative, rod-shaped, motile, non-sporulating and non-fermenting bacteria were shown to belong to the genus Cupriavidus of the Betaproteobacteria on the basis of their 16S rRNA gene sequence analyses. The sequence similarity value with their near phylogenetic neighbour, Cupriavidus pauculus LMG3413T, was 98.5%. However, the DNA-DNA hybridization values (8-58%) and ribotyping analysis both enabled these strains to be differentiated from related Cupriavidus species with validly published names. The RiboPrint patterns of the three strains also revealed that the strains were genetically related even though they displayed a clonal diversity. The major cellular fatty acids detected in these strains included C15:0 ISO 2OH/C16:1 ?7c, hexadecanoic (16:0) and cis-11-octadecenoic (C18:1 ?7c). Their G+C contents ranged from 68.0  to 68.6 mol%, and their major isoprenoid quinone was Ubiquinone Q-8. Of these three strains, only strain USMAHM13 (= DSM 25816 = KCTC 32390) was discovered to exhibit yellow pigmentation that is characteristic of the carotenoid family. Their assembled genomes also showed that the three strains were not identical in terms of their genome sizes that were 7.82, 7.95 and 8.70 Mb for strains USMAHM13, USMAA1020 and USMAA2-4, respectively, which are slightly larger than that of Cupriavidus necator H16 (7.42 Mb). The average nucleotide identity (ANI) results indicated that the strains were genetically related and the genome pairs belong to the same species. On the basis of the results obtained in this study, the three strains are considered to represent a novel species for which the name Cupriavidus malaysiensis sp. nov. is proposed. The type strain of the species is USMAA1020T (= DSM 19416T = KCTC 32390T).


July 7, 2019

FDA-CDC antimicrobial resistance isolate bank: A publicly-available resource to support research, development and regulatory requirements.

The FDA-CDC Antimicrobial Resistance Isolate Bank was created in July 2015 as a publicly available resource to combat antimicrobial resistance. It is a curated repository of bacterial isolates with an assortment of clinically-important resistance mechanisms that have been phenotypically and genotypically characterized. In the first two years of operation, the Bank offered 14 panels comprising 496 unique isolates and had filled 486 orders from 394 institutions throughout the United States. New panels are being added. Copyright © 2017 American Society for Microbiology.


July 7, 2019

De novo mutations resolve disease transmission pathways in clonal malaria

Detecting de novo mutations in viral and bacterial pathogens enables researchers to reconstruct detailed networks of disease transmission and is a key technique in genomic epidemiology. However, these techniques have not yet been applied to the malaria parasite, Plasmodium falciparum, in which a larger genome, slower generation times, and a complex life cycle make them difficult to implement. Here, we demonstrate the viability of de novo mutation studies in P. falciparum for the first time. Using a combination of sequencing, library preparation, and genotyping methods that have been optimized for accuracy in low-complexity genomic regions, we have detected de novo mutations that distinguish nominally identical parasites from clonal lineages. Despite its slower evolutionary rate compared with bacterial or viral species, de novo mutation can be detected in P. falciparum across timescales of just 1-2?years and evolutionary rates in low-complexity regions of the genome can be up to twice that detected in the rest of the genome. The increased mutation rate allows the identification of separate clade expansions that cannot be found using previous genomic epidemiology approaches and could be a crucial tool for mapping residual transmission patterns in disease elimination campaigns and reintroduction scenarios.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.