X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Thursday, November 12, 2020

Product Note: SMRTbell express template prep 2.0 for microbial multiplexing

The SMRTbell Express Template Prep Kit 2.0 provides a streamlined, single-tube reaction strategy to generate SMRTbell libraries from 500 bp to >50 kb insert size targets to support large-insert genomic libraries, multiplexed microbial genomes and amplicon sequencing. With this new formulation, we have increased both the yield and efficiency of SMRTbell library preparation for SMRT Sequencing while further minimizing handling-induced DNA damage to retain the integrity of genomic DNA (gDNA). This product note highlights the key benefits, performance, and resources available for obtaining complete microbial genome assemblies with multiplexed sequencing. By using a single-tube, addition-only strategy, the streamlined workflow reduces…

Read More »

Thursday, November 12, 2020

Application Note: Microbial multiplexing workflow on the Sequel System

Obtaining microbial genomes with the highest accuracy and contiguity is extremely important when exploring the functional impact of genetic and epigenetic variants on a genome-wide scale. A comprehensive view of the bacterial genome, including genes, regulatory regions, IS elements, phage integration sites, and base modifications is vital to understanding key traits such as antibiotic resistance, virulence, and metabolism. SMRT Sequencing provides complete genomes, often assembled into a single contig. Our streamlined microbial multiplexing procedure for the Sequel System, from library preparation to genome assembly, can be completed with less than 8 hours bench time. Starting with high-quality genomic DNA (gDNA),…

Read More »

Thursday, November 12, 2020

Application Brief: Targeted sequencing for amplicons – Best Practices

With Single Molecule, Real-Time (SMRT) Sequencing and the Sequel System, you can easily and cost effectively generate highly accurate long reads (HiFi reads, >99% single-molecule accuracy) from genes or regions of interest ranging in size from several hundred base pairs to 20 kb. Target all types of variation across relevant genomic regions, including low complexity regions like repeat expansions, promoters, and flanking regions of transposable elements.

Read More »

Tuesday, October 27, 2020

ASHG CoLab: PacBio HiFi reads for comprehensive characterization of genomes and single-cell isoform expression

In this ASHG 2020 CoLab presentation hear Principal Scientists, Aaron Wenger and Elizabeth Tseng share how highly accurate long reads (HiFi reads) provide comprehensive variant detection for both genomes and transcriptomes. Aaron Wenger describes how new improvements in protocols and analysis methods have increased scalability and accuracy of variant calling. As demonstrated in the precisionFDA Truth Challenge V2, HiFi reads (>99% accurate, 15 kb – 20 kb) now outperform short reads for single nucleotide and structural variant calling and match for small indels. This includes calling >30,000 small variants and >10,000 structural variants missed by short reads, many in medically…

Read More »

Sunday, October 25, 2020

Video Poster: Capture long-read isoform sequencing (Iso-Seq) for uncovering human isoform diversity in the brain and characterizing SARS-CoV2 viral RNAs

Most genes in eukaryotic organisms produce alternative isoforms, broadening the diversity of proteins and non-coding RNAs encoded by the genome. In contrast to other RNA sequencing platforms that rely on short-read sequencing, long accurate reads from PacBio Single Molecule, Real-Time (SMRT) Sequencing can characterize full-length transcripts without the need for assembly and inference. The PacBio isoform sequencing (Iso-Seq) method generates full-length sequences for transcripts up to 10 kb in length, with scalable throughput using barcoding approaches. The Iso-Seq application can be employed for a wide variety of studies, including improvement of gene annotation, identification of novel isoforms and fusion transcripts,…

Read More »

Sunday, October 25, 2020

ASHG Virtual Poster: Long range phasing of cardiac disease genes using new long read sequencing technologies

Alex Dainis, a graduate student in Euan Ashley’s lab at Stanford University, presents her ASHG 2015 poster on haplotyping for genes linked to hypertrophic cardiomyopathy. Using the Iso-Seq method with SMRT Sequencing, she sequenced full transcripts of two genes of interest, generating data on 150 different isoforms. Rare variants, which could not be found with other technologies, were associated with haplotypes.

Read More »

Sunday, October 25, 2020

ASHG PacBio Workshop: SMRT Sequencing as a translational research tool to investigate germline, somatic and infectious diseases

Melissa Laird Smith discussed how the Icahn School of Medicine at Mount Sinai uses long-read sequencing for translational research. She gave several examples of targeted sequencing projects run on the Sequel System including CYP2D6, phased mutations of GLA in Fabry’s disease, structural variation breakpoint validation in glioblastoma, and full-length immune profiling of TCR sequences.

Read More »

Sunday, October 25, 2020

AGBT Virtual Poster: Single-molecule sequencing reveals the presence of distinct JC polyomavirus populations in patients with progressive multifocal leukoencephalopathy

At AGBT 2017, Lars Paulin from the University of Helsinki presented this poster on whole genome sequencing of the virus responsible for progressive multifocal leukoencephalopathy, a rare and dangerous brain infection. His team used long amplicon analysis to resolve the whole virus genome from three patient samples, pooled them for SMRT Sequencing, and identified variants and rearrangements. This work represents the first time the viral genome was sequenced from patients.

Read More »

Sunday, October 25, 2020

Tutorial: Circular Consensus Sequence analysis application [SMRT Link v5.0.0]

This tutorial provides an overview of the Circular Consensus Sequence (CCS) analysis application. The CCS algorithm is used in applications that require distinguishing closely related DNA molecules in the same sample. Applications of CCS include profiling microbial communities, resolving viral populations and accurately identifying somatic variations within heterogeneous tumor cells. This tutorial covers features of SMRT Link v5.0.0.

Read More »

Sunday, October 25, 2020

Tutorial: Long amplicon analysis application [SMRT Link v5.0.0]

This tutorial provides an overview of the Long Amplicon Analysis (LAA) application. The LAA algorithm generates highly accurate, phased and full-length consensus sequences from long amplicons. Applications of LAA include HLA typing, alternative haplotyping, and localized de novo assemblies of targeted genes. This tutorial covers features of SMRT Link v5.0.0.

Read More »

Sunday, October 25, 2020

Webinar: A paradigm shift in HLA sequencing: from exons to high-resolution allele-level HLA yyping

Human MHC class I genes HLA-A, -B, -C, and class II genes HLA -DR, -DQ, and -DP play a critical role in the immune system as primary factors responsible for organ transplant rejection. Additionally, the HLA genes are important targets for clinical and drug sensitivity research because of their direct or linkage-based association with several diseases, including cancer, and autoimmune diseases. HLA genes are highly polymorphic, and their diversity originates from exonic combinations as well as recombination events. With full-length gene sequencing, a significant increase of new alleles in the HLA database is expected, stressing the need for high-resolution sequencing.…

Read More »

1 2 3 27

Subscribe for blog updates:

Archives