Menu
June 1, 2021

Full-length sequencing of HLA class I genes of more than 1000 samples provides deep insights into sequence variability

Author(s): Lang, Kathrin and Wagner, Ines and Schoene, Bianca and Schöfl, Gerhard and Zweiniger, Carolin and Clausing, Sylvia and Duport, Yannick and Gscheidel, Nicola and Dahl, Andreas and Sauter, Juergen and Lange, Vinzenz and Böhme, Irina and Schmidt, Alexander

Aim: The vast majority of donor typing relies on sequencing exons 2 and 3 of HLA class I genes (HLA-A, -B, -C). With such an approach certain allele combinations do not result in the anticipated “high resolution” (G-code) typing, due to the lack of exon-phasing information. To resolve ambiguous typing results for a haplotype frequency project, we established a whole gene sequencing approach for HLA class I, facilitating also an estimation of the degree of sequence variability outside the commonly sequenced exons. Methods: Primers were developed flanking the UTR regions resulting in similar amplicon lengths of 4.2-4.4 kb. Using a 4-primer approach, secondary primers containing barcodes were combined with the gene specific primers to obtain barcoded full-gene amplicons in a single amplification step. Amplicons were pooled, purified, and ligated to SMRT bells (i.e. annealing points for sequencing primers) following standard protocols from Pacific Biosciences. Taking advantage of the SMRT chemistry, pools of 48-72 amplicons were sequenced full length and phased in single runs on a Pacific Biosciences RSII instrument. Demultiplexing was achieved using the SMRT portal. Sequence analysis was performed using NGSengine software (GenDx). Results: We successfully performed full-length gene sequencing of 1003 samples, harboring ambiguous typings of either HLA-A (n=46), HLA-B (n=304) or HLA-C (n=653). Despite the high per-read raw error rates typical for SMRT sequencing (~15%) the consensus sequence proved highly reliable. All consensus sequences for exons 2 and 3 were in full accordance with their MiSeq-derived sequences. Unambiguous allelic resolution was achieved for all samples. We observed novel intronic, exonic as well as UTR sequence variations for many of the alleles covered by our data set. This included sequences of 600 individuals with HLA-C*07:01/C*07:02 genotype revealing the extent of sequence variation outside the exons 2 and 3. Conclusion: Here we present a whole gene amplification and sequencing approach for HLA class I genes. The maturity of this approach was demonstrated by sequencing more than 1000 samples, achieving fully phased allelic sequences. Extensive sequencing of one common allele combination hints at the yet to discover diversity of the HLA system outside the commonly analyzed exons.

Organization: DKMS Life Science Lab
Year: 2015

View Conference Poster

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.